
CHAPTER 13 – MYSQL REVISION TOUR

MYSQL

It is freely available open source Relational Database Management System (RDBMS) that uses Structured Query
Language(SQL). In MySQL database , information is stored in Tables. A single MySQL database can contain many tables

at once and store thousands of individual records.

SQL (Structured Query Language)

SQL is a language that enables you to create and operate on relational databases, which are sets of related information

stored in tables.

DIFFERENT DATA MODELS

A data model refers to a set of concepts to describe the structure of a database , and certain constraints (restrictions)

that the database should obey. The four data model that are used for database management are :

1. Relational data model : In this data model, the data is organized into tables (i.e. rows and columns). These tables are

called relations.

2. Hierarchical data model 3. Network data model 4. Object Oriented data model

RELATIONAL MODEL TERMINOLOGY

1. Relation : A table storing logically related data is called a Relation.

2. Tuple : A row of a relation is generally referred to as a tuple.

3. Attribute : A column of a relation is generally referred to as an attribute.

4. Degree : This refers to the number of attributes in a relation.

5. Cardinality : This refers to the number of tuples in a relation.

6. Primary Key : This refers to a set of one or more attributes that can uniquely identify tuples within the relation.

7. Candidate Key : All attribute combinations inside a relation that can serve as primary key are candidate keys as these

are candidates for primary key position.

8. Alternate Key : A candidate key that is not primary key, is called an alternate key.

9. Foreign Key : A non-key attribute, whose values are derived from the primary key of some other table, is known as

foreign key in its current table.

REFERENTIAL INTEGRITY

- A referential integrity is a system of rules that a DBMS uses to ensure that relationships between records in related

tables are valid, and that users don’t accidentally delete or change related data. This integrity is ensured by foreign

key.

CLASSIFICATION OF SQL STATEMENTS

SQL commands can be mainly divided into following categories:

1. Data Definition Language(DDL) Commands
Commands that allow you to perform task, related to data definition e.g;

 Creating, altering and dropping.

 Granting and revoking privileges and roles.

 Maintenance commands.

2. Data Manipulation Language(DML) Commands

Commands that allow you to perform data manipulation e.g., retrieval, insertion, deletion and modification of

data stored in a database.

3. Transaction Control Language(TCL) Commands

Commands that allow you to manage and control the transactions e.g.,

 Making changes to database, permanent

 Undoing changes to database, permanent

 Creating savepoints

 Setting properties for current transactions.

MySQL ELEMENTS

1. Literals 2. Datatypes 3. Nulls 4. Comments

LITERALS

It refer to a fixed data value. This fixed data value may be of character type or numeric type. For example, ‘replay’ ,

‘Raj’, ‘8’ , ‘306’ are all character literals.

Numbers not enclosed in quotation marks are numeric literals. E.g. 22 , 18 , 1997 are all numeric literals.

Numeric literals can either be integer literals i.e., without any decimal or be real literals i.e. with a decimal point e.g. 17

is an integer literal but 17.0 and 17.5 are real literals.

DATA TYPES

Data types are means to identify the type of data and associated operations for handling it. MySQL data types are

divided into three categories:

 Numeric

 Date and time

 String types

Numeric Data Type

1. int – used for number without decimal.

2. Decimal(m,d) – used for floating/real numbers. m denotes the total length of number and d is number of decimal

digits.

 Date and Time Data Type

 1. date – used to store date in YYYY-MM-DD format.

 2. time – used to store time in HH:MM:SS format.

String Data Types

 1. char(m) – used to store a fixed length string. m denotes max. number of characters.

 2. varchar(m) – used to store a variable length string. m denotes max. no. of characters.

DIFFERENCE BETWEEN CHAR AND VARCHAR DATA TYPE

S.NO. Char Datatype Varchar Datatype
1. It specifies a fixed length character

String.
It specifies a variable length character string.

2. When a column is given datatype as
CHAR(n), then MySQL ensures that all
values stored in that column have this
length i.e. n bytes. If a value is shorter
than this length n then blanks are
added, but the size of value remains
n bytes.

When a column is given datatype as VARCHAR(n),
then the maximum size a value in this column can
have is n bytes. Each value that is stored in this
column store exactly as you specify it i.e. no blanks
are added if the length is shorter than maximum
length n.

NULL VALUE

If a column in a row has no value, then column is said to be null , or to contain a null. You should use a null value when

the actual value is not known or when a value would not be meaningful.

DATABASE COMMNADS

1. VIEW EXISTING DATABASE

 To view existing database names, the command is : SHOW DATABASES ;

2. CREATING DATABASE IN MYSQL

 For creating the database in MySQL, we write the following command :

 CREATE DATABASE <databasename> ;

 e.g. In order to create a database Student, command is :

 CREATE DATABASE Student ;

3. ACCESSING DATABASE

 For accessing already existing database , we write :

 USE <databasename> ;

 e.g. to access a database named Student , we write command as :

 USE Student ;

4. DELETING DATABASE

 For deleting any existing database , the command is :

 DROP DATABASE <databasename> ;

 e.g. to delete a database , say student, we write command as ;

 DROP DATABASE Student ;

5. VIEWING TABLE IN DATABASE

 In order to view tables present in currently accessed database , command is : SHOW TABLES ;

CREATING TABLES IN MYSQL

- Tables are created with the CREATE TABLE command. When a table is created, its columns are named, data types

and sizes are supplied for each column.

 Syntax of CREATE TABLE command is :

 CREATE TABLE <table-name>

 (<column name> <data type> ,

 <column name> <data type> ,

 ………) ;

E.g. in order to create table EMPLOYEE given below :

ECODE ENAME GENDER GRADE GROSS

We write the following command :

 CREATE TABLE employee

 (ECODE integer ,

 ENAME varchar(20) ,

 GENDER char(1) ,

 GRADE char(2) ,

 GROSS integer) ;

INSERTING DATA INTO TABLE

- The rows are added to relations(table) using INSERT command of SQL. Syntax of INSERT is :

 INSERT INTO <tablename> [<column list>]

 VALUE (<value1> , <value2> , …..) ;

e.g. to enter a row into EMPLOYEE table (created above), we write command as :

 INSERT INTO employee

 VALUES(1001 , ‘Ravi’ , ‘M’ , ‘E4’ , 50000);

 OR

 INSERT INTO employee (ECODE , ENAME , GENDER , GRADE , GROSS)

 VALUES(1001 , ‘Ravi’ , ‘M’ , ‘E4’ , 50000);

ECODE ENAME GENDER GRADE GROSS

1001 Ravi M E4 50000

 In order to insert another row in EMPLOYEE table , we write again INSERT command :

 INSERT INTO employee

 VALUES(1002 , ‘Akash’ , ‘M’ , ‘A1’ , 35000);

ECODE ENAME GENDER GRADE GROSS

1001 Ravi M E4 50000

1002 Akash M A1 35000

INSERTING NULL VALUES

- To insert value NULL in a specific column, we can type NULL without quotes and NULL will be inserted in that

column. E.g. in order to insert NULL value in ENAME column of above table, we write INSERT command as :

 INSERT INTO EMPLOYEE

 VALUES (1004 , NULL , ‘M’ , ‘B2’ , 38965) ;

ECODE ENAME GENDER GRADE GROSS

1001 Ravi M E4 50000
1002 Akash M A1 35000

1004 NULL M B2 38965

SIMPLE QUERY USING SELECT COMMAND

- The SELECT command is used to pull information from a table. Syntax of SELECT command is :

 SELECT <column name>,<column name>

 FROM <tablename>

 WHERE <condition name> ;

SELECTING ALL DATA

- In order to retrieve everything (all columns) from a table, SELECT command is used as :

 SELECT * FROM <tablename> ;

e.g.

 In order to retrieve everything from Employee table, we write SELECT command as :

 EMPLOYEE

ECODE ENAME GENDER GRADE GROSS
1001 Ravi M E4 50000

1002 Akash M A1 35000

1004 NULL M B2 38965

SELECT * FROM Employee ;

SELECTING PARTICULAR COLUMNS

EMPLOYEE

ECODE ENAME GENDER GRADE GROSS

1001 Ravi M E4 50000

1002 Akash M A1 35000
1004 Neela F B2 38965

1005 Sunny M A2 30000
1006 Ruby F A1 45000

1009 Neema F A2 52000
- A particular column from a table can be selected by specifying column-names with SELECT command. E.g. in above

table, if we want to select ECODE and ENAME column, then command is :

 SELECT ECODE , ENAME

 FROM EMPLOYEE ;

 E.g.2 in order to select only ENAME, GRADE and GROSS column, the command is :

 SELECT ENAME , GRADE , GROSS

 FROM EMPLOYEE ;

SELECTING PARTICULAR ROWS

We can select particular rows from a table by specifying a condition through WHERE clause along with SELECT

statement. E.g. In employee table if we want to select rows where Gender is female, then command is :

 SELECT * FROM EMPLOYEE

 WHERE GENDER = ‘F’ ;

E.g.2. in order to select rows where salary is greater than 48000, then command is :

 SELECT * FROM EMPLOYEE

 WHERE GROSS > 48000 ;

ELIMINATING REDUNDANT DATA

 The DISTINCT keyword eliminates duplicate rows from the results of a SELECT statement. For example ,

 SELECT GENDER FROM EMPLOYEE ;

 SELECT DISTINCT(GENDER) FROM EMPLOYEE ;

VIEWING STRUCTURE OF A TABLE

- If we want to know the structure of a table, we can use DESCRIBE or DESC command, as per following syntax :

 DESCRIBE | DESC <tablename> ;

e.g. to view the structure of table EMPLOYEE, command is : DESCRIBE EMPLOYEE ; OR DESC EMPLOYEE ;

USING COLUMN ALIASES

- The columns that we select in a query can be given a different name, i.e. column alias name for output purpose.

 GENDER
 M

 M

 F
 M

 F
 F

DISTINCT(GENDER)

 M
 F

Syntax :

 SELECT <columnname> AS column alias , <columnname> AS column alias …..

 FROM <tablename> ;

 e.g. In output, suppose we want to display ECODE column as EMPLOYEE_CODE in output , then command is :

 SELECT ECODE AS “EMPLOYEE_CODE”

 FROM EMPLOYEE ;

CONDITION BASED ON A RANGE

- The BETWEEN operator defines a range of values that the column values must fall in to make the condition true. The

range include both lower value and upper value.

e.g. to display ECODE, ENAME and GRADE of those employees whose salary is between 40000 and 50000, command

is:

 SELECT ECODE , ENAME ,GRADE

 FROM EMPLOYEE

 WHERE GROSS BETWEEN 40000 AND 50000 ;

Output will be :

CONDITION BASED ON A LIST

- To specify a list of values, IN operator is used. The IN operator selects value that match any value in a given list of

values. E.g.

 SELECT * FROM EMPLOYEE

 WHERE GRADE IN (‘A1’ , ‘A2’);

Output will be :

- The NOT IN operator finds rows that do not match in the list. E.g.

SELECT * FROM EMPLOYEE

 WHERE GRADE NOT IN (‘A1’ , ‘A2’);

Output will be :

CONDITION BASED ON PATTERN MATCHES

- LIKE operator is used for pattern matching in SQL. Patterns are described using two special wildcard characters:

1. percent(%) – The % character matches any substring.

2. underscore(_) – The _ character matches any character.

e.g. to display names of employee whose name starts with R in EMPLOYEE table, the command is :

ECODE ENAME GRADE

1001 Ravi E4
1006 Ruby A1

ECODE ENAME GENDER GRADE GROSS
1002 Akash M A1 35000

1006 Ruby F A1 45000

1005 Sunny M A2 30000
1009 Neema F A2 52000

ECODE ENAME GENDER GRADE GROSS
1001 Ravi M E4 50000

1004 Neela F B2 38965

 SELECT ENAME

 FROM EMPLOYEE

 WHERE ENAME LIKE ‘R%’ ;

Output will be :

e.g. to display details of employee whose second character in name is ‘e’.

 SELECT *

 FROM EMPLOYEE

 WHERE ENAME LIKE ‘_e%’ ;

Output will be :

e.g. to display details of employee whose name ends with ‘y’.

 SELECT *

 FROM EMPLOYEE

 WHERE ENAME LIKE ‘%y’ ;

Output will be :

SEARCHING FOR NULL

- The NULL value in a column can be searched for in a table using IS NULL in the WHERE clause. E.g. to list employee

details whose salary contain NULL, we use the command :

 SELECT *

 FROM EMPLOYEE

 WHERE GROSS IS NULL ;

e.g.

 STUDENT

Roll_No Name Marks
1 ARUN NULL

2 RAVI 56

4 SANJAY NULL
 to display the names of those students whose marks is NULL, we use the command :

 SELECT Name

 FROM EMPLOYEE

 WHERE Marks IS NULL ;

Output will be :

Name
ARUN

SANJAY

ENAME
Ravi

Ruby

ECODE ENAME GENDER GRADE GROSS
1004 Neela F B2 38965

1009 Neema F A2 52000

ECODE ENAME GENDER GRADE GROSS

1005 Sunny M A2 30000

1006 Ruby F A1 45000

SORTING RESULTS

Whenever the SELECT query is executed , the resulting rows appear in a predecided order.The ORDER BY clause allow

sorting of query result. The sorting can be done either in ascending or descending order, the default is ascending.

The ORDER BY clause is used as :

 SELECT <column name> , <column name>….

 FROM <tablename>

 WHERE <condition>

 ORDER BY <column name> ;

e.g. to display the details of employees in EMPLOYEE table in alphabetical order, we use command :

 SELECT *

 FROM EMPLOYEE

 ORDER BY ENAME ;

 Output will be :

ECODE ENAME GENDER GRADE GROSS

1002 Akash M A1 35000
1004 Neela F B2 38965

1009 Neema F A2 52000
1001 Ravi M E4 50000

1006 Ruby F A1 45000
1005 Sunny M A2 30000

e.g. display list of employee in descending alphabetical order whose salary is greater than 40000.

 SELECT ENAME

 FROM EMPLOYEE

 WHERE GROSS > 40000

 ORDER BY ENAME desc ;

Output will be :

ENAME
Ravi

Ruby

Neema

MODIFYING DATA IN TABLES

you can modify data in tables using UPDATE command of SQL. The UPDATE command specifies the rows to be changed

using the WHERE clause, and the new data using the SET keyword. Syntax of update command is :

 UPDATE <tablename>

 SET <columnname>=value , <columnname>=value

 WHERE <condition> ;

e.g. to change the salary of employee of those in EMPLOYEE table having employee code 1009 to 55000.

 UPDATE EMPLOYEE

 SET GROSS = 55000

 WHERE ECODE = 1009 ;

UPDATING MORE THAN ONE COLUMNS

e.g. to update the salary to 58000 and grade to B2 for those employee whose employee code is 1001.

 UPDATE EMPLOYEE

 SET GROSS = 58000, GRADE=’B2’

 WHERE ECODE = 1009 ;

OTHER EXAMPLES

 e.g.1. Increase the salary of each employee by 1000 in the EMPLOYEE table.

 UPDATE EMPLOYEE

 SET GROSS = GROSS +100 ;

 e.g.2. Double the salary of employees having grade as ‘A1’ or ‘A2’ .

 UPDATE EMPLOYEE

 SET GROSS = GROSS * 2 ;

 WHERE GRADE=’A1’ OR GRADE=’A2’ ;

e.g.3. Change the grade to ‘A2’ for those employees whose employee code is 1004 and name is Neela.

 UPDATE EMPLOYEE

 SET GRADE=’A2’

 WHERE ECODE=1004 AND GRADE=’NEELA’ ;

DELETING DATA FROM TABLES

To delete some data from tables, DELETE command is used. The DELETE command removes rows from a table. The

syntax of DELETE command is :

 DELETE FROM <tablename>

 WHERE <condition> ;

For example, to remove the details of those employee from EMPLOYEE table whose grade is A1.

 DELETE FROM EMPLOYEE

 WHERE GRADE =’A1’ ;

TO DELETE ALL THE CONTENTS FROM A TABLE

 DELETE FROM EMPLOYEE ;

 So if we do not specify any condition with WHERE clause, then all the rows of the table will be deleted. Thus above

line will delete all rows from employee table.

DROPPING TABLES

 The DROP TABLE command lets you drop a table from the database. The syntax of DROP TABLE command is :

 DROP TABLE <tablename> ;

e.g. to drop a table employee, we need to write :

 DROP TABLE employee ;

Once this command is given, the table name is no longer recognized and no more commands can be given on that table.

After this command is executed, all the data in the table along with table structure will be deleted.

S.NO. DELETE COMMAND DROP TABLE COMMAND

 1 It is a DML command. It is a DDL Command.

 2 This command is used to delete only rows
 of data from a table

This command is used to delete all the data of the table
along with the structure of the table. The table is no
longer recognized when this command gets executed.

 3 Syntax of DELETE command is:
DELETE FROM <tablename>
WHERE <condition> ;

Syntax of DROP command is :
DROP TABLE <tablename> ;

ALTER TABLE COMMAND

The ALTER TABLE command is used to change definitions of existing tables.(adding columns,deleting columns etc.). The

ALTER TABLE command is used for :

1. adding columns to a table

2. Modifying column-definitions of a table.

3. Deleting columns of a table.

4. Adding constraints to table.

5. Enabling/Disabling constraints.

ADDING COLUMNS TO TABLE

To add a column to a table, ALTER TABLE command can be used as per following syntax:

 ALTER TABLE <tablename>

 ADD <Column name> <datatype> <constraint> ;

e.g. to add a new column ADDRESS to the EMPLOYEE table, we can write command as :

 ALTER TABLE EMPLOYEE

 ADD ADDRESS VARCHAR(50);

 A new column by the name ADDRESS will be added to the table, where each row will contain NULL value for

the new column.

ECODE ENAME GENDER GRADE GROSS ADDRESS
1001 Ravi M E4 50000 NULL

1002 Akash M A1 35000 NULL
1004 Neela F B2 38965 NULL

1005 Sunny M A2 30000 NULL
1006 Ruby F A1 45000 NULL

1009 Neema F A2 52000 NULL

However if you specify NOT NULL constraint while adding a new column, MySQL adds the new column with the default

value of that datatype e.g. for INT type it will add 0 , for CHAR types, it will add a space, and so on.

e.g. Given a table namely Testt with the following data in it.

 Col1 Col2
 1 A

 2 G

Now following commands are given for the table. Predict the table contents after each of the following statements:

(i) ALTER TABLE testt ADD col3 INT ;

(ii) ALTER TABLE testt ADD col4 INT NOT NULL ;

(iii) ALTER TABLE testt ADD col5 CHAR(3) NOT NULL ;

(iv) ALTER TABLE testt ADD col6 VARCHAR(3);

MODIFYING COLUMNS

Column name and data type of column can be changed as per following syntax :

 ALTER TABLE <table name>

 CHANGE <old column name> <new column name> <new datatype>;

If Only data type of column need to be changed, then

 ALTER TABLE <table name>

 MODIFY <column name> <new datatype>;

e.g.1. In table EMPLOYEE, change the column GROSS to SALARY.

 ALTER TABLE EMPLOYEE

 CHANGE GROSS SALARY INTEGER;

e.g.2. In table EMPLOYEE , change the column ENAME to EM_NAME and data type from VARCHAR(20) to VARCHAR(30).

 ALTER TABLE EMPLOYEE

 CHANGE ENAME EM_NAME VARCHAR(30);

e.g.3. In table EMPLOYEE , change the datatype of GRADE column from CHAR(2) to VARCHAR(2).

 ALTER TABLE EMPLOYEE

 MODIFY GRADE VARCHAR(2);

DELETING COLUMNS

To delete a column from a table, the ALTER TABLE command takes the following form :

 ALTER TABLE <table name>

 DROP <column name>;

e.g. to delete column GRADE from table EMPLOYEE, we will write :

 ALTER TABLE EMPLOYEE

 DROP GRADE ;

ADDING/REMOVING CONSTRAINTS TO A TABLE

ALTER TABLE statement can be used to add constraints to your existing table by using it in following manner:

 TO ADD PRIMARY KEY CONSTRAINT

 ALTER TABLE <table name>

 ADD PRIMARY KEY (Column name);

e.g. to add PRIMARY KEY constraint on column ECODE of table EMPLOYEE , the command is :

 ALTER TABLE EMPLOYEE

 ADD PRIMARY KEY (ECODE) ;

 TO ADD FOREIGN KEY CONSTRAINT

 ALTER TABLE <table name>

 ADD FOREIGN KEY (Column name) REFERENCES Parent Table (Primary key of Parent Table);

REMOVING CONSTRAINTS

- To remove primary key constraint from a table, we use ALTER TABLE command as :

 ALTER TABLE <table name>

 DROP PRIMARY KEY ;

- To remove foreign key constraint from a table, we use ALTER TABLE command as :

 ALTER TABLE <table name>

 DROP FOREIGN KEY ;

ENABLING/DISABLING CONSTRAINTS

Only foreign key can be disabled/enabled in MySQL.

To disable foreign keys : SET FOREIGN_KEY_CHECKS = 0 ;

To enable foreign keys : SET FOREIGN_KEY_CHECKS = 1 ;

INTEGRITY CONSTRAINTS/CONSTRAINTS

- A constraint is a condition or check applicable on a field(column) or set of fields(columns).

- Common types of constraints include :

S.No. Constraints Description
1 NOT NULL Ensures that a column cannot have NULL value

2 DEFAULT Provides a default value for a column when none is specified
3 UNIQUE Ensures that all values in a column are different

4 CHECK Makes sure that all values in a column satisfy certain criteria
5 PRIMARY KEY Used to uniquely identify a row in the table

6 FOREIGN KEY Used to ensure referential integrity of the data

NOT NULL CONSTRAINT

By default, a column can hold NULL. It you not want to allow NULL value in a column, then NOT NULL constraint must be
applied on that column. E.g.

 CREATE TABLE Customer
 (SID integer NOT NULL ,

 Last_Name varchar(30) NOT NULL ,

 First_Name varchar(30)) ;

 Columns SID and Last_Name cannot include NULL, while First_Name can include NULL.

An attempt to execute the following SQL statement,
 INSERT INTO Customer
 VALUES (NULL , ‘Kumar’ , ‘Ajay’);
 will result in an error because this will lead to column SID being NULL, which violates the NOT NULL constraint on that
column.

DEFAULT CONSTARINT

The DEFAULT constraint provides a default value to a column when the INSERT INTO statement does not provide a

specific value. E.g.

 CREATE TABLE Student

 (Student_ID integer ,

 Name varchar(30) ,

 Score integer DEFAULT 80);

When following SQL statement is executed on table created above:

 INSERT INTO Student

 VALUES (10 , ‘Ravi’);

Then table Student looks like the following:

Student_ID Name Score
10 Ravi 80

UNIQUE CONSTRAINT

- The UNIQUE constraint ensures that all values in a column are distinct. In other words, no two rows can hold the

same value for a column with UNIQUE constraint.

no value has been provided for score field.

score field has got the default value

e.g.

 CREATE TABLE Customer

 (SID integer Unique ,

 Last_Name varchar(30) ,

 First_Name varchar(30)) ;

Column SID has a unique constraint, and hence cannot include duplicate values. So, if the table already contains the

following rows :

SID Last_Name First_Name
1 Kumar Ravi

2 Sharma Ajay

3 Devi Raj

The executing the following SQL statement,

 INSERT INTO Customer

 VALUES (‘3’ , ‘Cyrus‘ , ‘Grace’) ;

 will result in an error because the value 3 already exist in the SID column, thus trying to insert another row with that

value violates the UNIQUE constraint.

 CHECK CONSTRAINT

- The CHECK constraint ensures that all values in a column satisfy certain conditions. Once defined, the table will only

insert a new row or update an existing row if the new value satisfies the CHECK constraint.

e.g.

 CREATE TABLE Customer

 (SID integer CHECK (SID > 0),

 Last_Name varchar(30) ,

 First_Name varchar(30)) ;

 So, attempting to execute the following statement :

 INSERT INTO Customer

 VALUES (-2 , ‘Kapoor’ , ‘Raj’);

 will result in an error because the values for SID must be greater than 0.

PRIMARY KEY CONSTRAINT

- A primary key is used to identify each row in a table. A primary key can consist of one or more fields(column) on a

table. When multiple fields are used as a primary key, they are called a composite key.

- You can define a primary key in CREATE TABLE command through keywords PRIMARY KEY. e.g.

 CREATE TABLE Customer
 (SID integer NOT NULL PRIMARY KEY,

 Last_Name varchar(30) ,

 First_Name varchar(30)) ;

Or

 CREATE TABLE Customer
 (SID integer,

 Last_Name varchar(30) ,

 First_Name varchar(30),

 PRIMARY KEY (SID)) ;

- The latter way is useful if you want to specify a composite primary key, e.g.

 CREATE TABLE Customer

 (Branch integer NOT NULL,

 SID integer NOT NULL ,

 Last_Name varchar(30) ,

 First_Name varchar(30),

 PRIMARY KEY (Branch , SID)) ;

FOREIGN KEY CONSTRAINT

- Foreign key is a non key column of a table (child table) that draws its values from primary key of another table(parent

table).

- The table in which a foreign key is defined is called a referencing table or child table. A table to which a foreign key

points is called referenced table or parent table.

e.g.

 TABLE: STUDENT

ROLL_NO NAME CLASS

1 ABC XI

2 DEF XII

3 XYZ XI

 TABLE: SCORE

ROLL_NO MARKS

1 55

2 83

3 90

Here column Roll_No is a foreign key in table SCORE(Child Table) and it is drawing its values from Primary key

(ROLL_NO) of STUDENT table.(Parent Key).

CREATE TABLE STUDENT

(ROLL_NO integer NOT NULL PRIMARY KEY ,

 NAME VARCHAR(30) ,

 CLASS VARCHAR(3));

 CREATE TABLE SCORE

 (ROLL_NO integer ,

 MARKS integer ,

 FOREIGN KEY(ROLL_NO) REFERNCES STUDENT(ROLL_NO)) ;

* Foreign key is always defined in the child table.

Parent Table

Child Table

Primary key

Syntax for using foreign key

 FOREIGN KEY(column name) REFERENCES Parent_Table(PK of Parent Table);

REFERENCING ACTIONS

Referencing action with ON DELETE clause determines what to do in case of a DELETE occurs in the parent table.

Referencing action with ON UPDATE clause determines what to do in case of a UPDATE occurs in the parent table.

 Actions:

1. CASCADE : This action states that if a DELETE or UPDATE operation affects a row from the parent table , then

automatically delete or update the matching rows in the child table i.e., cascade the action to child table.

2. SET NULL : This action states that if a DELETE or UPDATE operation affects a row from the parent table, then set the

foreign key column in the child table to NULL.

3. NO ACTION : Any attempt for DELETE or UPDATE in parent table is not allowed.

4. RESTRICT : This action rejects the DELETE or UPDATE operation for the parent table.

Q: Create two tables

 Customer(customer_id, name)

 Customer_sales(transaction_id, amount , customer_id)

 Underlined columns indicate primary keys and bold column names indicate foreign key.

 Make sure that no action should take place in case of a DELETE or UPDATE in the parent table.

Sol : CREATE TABLE Customer (

 customer_id int Not Null Primary Key ,

 name varchar(30)) ;

 CREATE TABLE Customer_sales (

 transaction_id Not Null Primary Key ,

 amount int ,

 customer_id int ,

 FOREIGN KEY(customer_id) REFERENCES Customer (customer_id)

 ON DELETE NO ACTION

 ON UPDATE NO ACTION);

Q: Distinguish between a Primary Key and a Unique key in a table.

Q: Distinguish between ALTER Command and UPDATE command of SQL.

S.NO. PRIMARY KEY UNIQUE KEY

1. Column having Primary key can’t contain
 NULL value

Column having Unique Key can contain
NULL value

2. There can be only one primary key in Table. Many columns can be defined as Unique key

S.NO. ALTER COMMAND UPDATE COMMAND
1. It is a DDL Command It is a DML command

2. It is used to change the definition of
existing table, i.e. adding column,
deleting column, etc.

It is used to modify the data values present
in the rows of the table.

3. Syntax for adding column in a table:
ALTER TABLE <tablename>
ADD <Column name><Datatype> ;

Syntax for using UPDATE command:
UPDATE <Tablename>
SET <Columnname>=value
WHERE <Condition> ;

AGGREGATE / GROUP FUNCTIONS

Aggregate / Group functions work upon groups of rows , rather than on single row, and return one single output.

Different aggregate functions are : COUNT() , AVG() , MIN() , MAX() , SUM ()

Table : EMPL

EMPNO ENAME JOB SAL DEPTNO

8369 SMITH CLERK 2985 10
8499 ANYA SALESMAN 9870 20

8566 AMIR SALESMAN 8760 30
8698 BINA MANAGER 5643 20

8912 SUR NULL 3000 10

1. AVG()

This function computes the average of given data.

e.g. SELECT AVG(SAL)

 FROM EMPL ;

Output

AVG(SAL)

6051.6

2. COUNT()

This function counts the number of rows in a given column.

If you specify the COLUMN name in parenthesis of function, then this function returns rows where COLUMN is not

null.

If you specify the asterisk (*), this function returns all rows, including duplicates and nulls.

e.g. SELECT COUNT(*)

 FROM EMPL ;

Output

COUNT(*)
5

e.g.2 SELECT COUNT(JOB)

 FROM EMPL ;

Output

COUNT(JOB)
4

3. MAX()

This function returns the maximum value from a given column or expression.

e.g. SELECT MAX(SAL)

 FROM EMPL ;

Output

MAX(SAL)
9870

4. MIN()

This function returns the minimum value from a given column or expression.

e.g. SELECT MIN(SAL)

 FROM EMPL ;

Output

MIN(SAL)

2985

5. SUM()

This function returns the sum of values in given column or expression.

e.g. SELECT SUM(SAL)

 FROM EMPL ;

Output

SUM(SAL)
30258

GROUPING RESULT – GROUP BY

The GROUP BY clause combines all those records(row) that have identical values in a particular field(column) or a group of

fields(columns).

GROUPING can be done by a column name, or with aggregate functions in which case the aggregate produces a value for

each group.

Table : EMPL

EMPNO ENAME JOB SAL DEPTNO
8369 SMITH CLERK 2985 10

8499 ANYA SALESMAN 9870 20

8566 AMIR SALESMAN 8760 30
8698 BINA MANAGER 5643 20

e.g. Calculate the number of employees in each grade.

 SELECT JOB, COUNT(*)

 FROM EMPL

 GROUP BY JOB ;

Output

 JOB COUNT(*)

CLERK 1
SALESMAN 2

MANAGER 1

e.g.2. Calculate the sum of salary for each department.

 SELECT DEPTNO , SUM(SAL)

 FROM EMPL

 GROUP BY DEPTNO ;

Output

 DEPTNO SUM(SAL)

10 2985

20 15513
30 8760

e.g.3. find the average salary of each department.

Sol:

** One thing that you should keep in mind is that while grouping , you should include only those values in the SELECT

list that either have the same value for a group or contain a group(aggregate) function. Like in e.g. 2 given above,

DEPTNO column has one(same) value for a group and the other expression SUM(SAL) contains a group function.

NESTED GROUP

- To create a group within a group i.e., nested group, you need to specify multiple fields in the GROUP BY expression.

e.g. To group records job wise within Deptno wise, you need to issue a query statement like :

 SELECT DEPTNO , JOB , COUNT(EMPNO)

 FROM EMPL

 GROUP BY DEPTNO , JOB ;

Output

DEPTNO JOB COUNT(EMPNO)

10 CLERK 1
20 SALESMAN 1

20 MANAGER 1
30 SALESMAN 1

PLACING CONDITION ON GROUPS – HAVING CLAUSE

- The HAVING clause places conditions on groups in contrast to WHERE clause that places condition on individual

rows. While WHERE conditions cannot include aggregate functions, HAVING conditions can do so.

- e.g. To display the jobs where the number of employees is less than 2,

 SELECT JOB, COUNT(*)

 FROM EMPL

 GROUP BY JOB

 HAVING COUNT(*) < 2 ;

 Output

 JOB COUNT(*)

 CLERK 1

 MANAGER 1

MySQL FUNCTIONS

A function is a special type of predefined command set that performs some operation and returns a single value.

Types of MySQL functions : String Functions , Maths Functions and Date & Time Functions.

Table : EMPL

EMPNO ENAME JOB SAL DEPTNO

8369 SMITH CLERK 2985 10
8499 ANYA SALESMAN 9870 20

8566 AMIR SALESMAN 8760 30
8698 BINA MANAGER 5643 20

8912 SUR NULL 3000 10

STRING FUNCTIONS

1. CONCAT() - Returns the Concatenated String.

 Syntax : CONCAT(Column1 , Column2 , Column3, …….)

e.g. SELECT CONCAT(EMPNO , ENAME) FROM EMPL WHERE DEPTNO=10;

 Output

CONCAT(EMPNO , ENAME)

8369SMITH

8912SUR

2. LOWER() / LCASE() - Returns the argument in lowercase.

 Syntax : LOWER(Column name)

 e.g.

 SELECT LOWER(ENAME) FROM EMPL ;

Output

LOWER(ENAME)
smith

anya
amir

bina
sur

3. UPPER() / UCASE() - Returns the argument in uppercase.

 Syntax : UPPER(Column name)

 e.g.

 SELECT UPPER(ENAME) FROM EMPL ;

Output

UPPER(ENAME)

SMITH
ANYA

AMIR
BINA

SUR

4. SUBSTRING() / SUBSTR() – Returns the substring as specified.

Syntax : SUBSTR(Column name, m , n), where m specifies starting index and n specifies number of characters

from the starting index m.

 e.g.

 SELECT SUBSTR(ENAME,2,2) FROM EMPL WHERE DEPTNO=20;

Output

SUBSTR(ENAME,2,2)

NY

IN

 SELECT SUBSTR(JOB,-2,2) FROM EMPL WHERE DEPTNO=20;

Output

SUBSTR(JOB,-4,2)

SM
AG

5. LTRIM() – Removes leading spaces.

 e.g. SELECT LTRIM(‘ RDBMS MySQL’) ;

Output

LTRIM(‘ RDBMS MySQL’)
RDBMS MySQL

6. RTRIM() – Removes trailing spaces.

 e.g. SELECT RTRIM(‘ RDBMS MySQL ’) ;

Output

RTRIM(‘ RDBMS MySQL’)

 RDBMS MySQL

7. TRIM() – Removes trailing and leading spaces.

 e.g. SELECT TRIM(‘ RDBMS MySQL ’) ;

Output

TRIM(‘ RDBMS MySQL’)
 RDBMS MySQL

8. LENGTH() – Returns the length of a string. e.g.

 SELECT LENGTH(“CANDID”) ;

 Output

LENGTH(“CANDID”)

 6

 e.g.2.

 SELECT LENGTH(ENAME) FROM EMPL;

 Output

LENGTH(ENAME)

 5
 4

 4
 4

 3

9. LEFT() – Returns the leftmost number of characters as specified.

 e.g. SELECT LEFT(‘CORPORATE FLOOR’ , 3) ;

 Output

LEFT(‘CORPORATE FLOOR’, 3)
 COR

10. RIGHT() – Returns the rightmost number of characters as specified.

 e.g. SELECT RIGHT(‘CORPORATE FLOOR’ , 3) ;

 Output

 RIGHT(‘CORPORATE FLOOR’, 3)

 OOR

11. MID() – This function is same as SUBSTRING() / SUBSTR() function. E.g.

 SELECT MID(“ABCDEF” , 2 , 4) ;

 Output

 MID(“ABCDEF” , 2 , 4)

 BCDE

NUMERIC FUNCTIONS

These functions accept numeric values and after performing the operation, return numeric value.

1. MOD() – Returns the remainder of given two numbers. e.g. SELECT MOD(11 , 4) ;

 Output

 MOD(11, 4)

 3

2. POW() / POWER() - This function returns mn i.e , a number m raised to the nth power.

 e.g. SELECT POWER(3,2) ;

Output

 POWER(3, 2)

 9

3. ROUND() – This function returns a number rounded off as per given specifications.

 e.g. ROUND(15.193 , 1) ;

 Output

 ROUND(15.193 , 1)

 15.2

 e.g. 2. SELECT ROUND(15.193 , -1); - This will convert the number to nearest ten’s .

Output

 ROUND(15.193 , -1)

 20

4. SIGN() – This function returns sign of a given number.

 If number is negative, the function returns -1.

 If number is positive, the function returns 1.

 If number is zero, the function returns 0.

 e.g. SELECT SIGN(-15) ;

 Output

 SIGN(-15)

 -1

 e.g.2 SELECT SIGN(20) ;

 Output

 SIGN(20)

 1

5. SQRT() – This function returns the square root of a given number. E.g.

 SELECT SQRT(25) ;

Output

 SQRT(25)

 5

6. TRUNCATE() – This function returns a number with some digits truncated. E.g.

 SELECT TRUNCATE(15.79 , 1) ;

 Output

 TRUNCATE(15.79 , 1)

 15.7

E.g. 2. SELECT TRUNCATE(15.79 , -1); - This command truncate value 15.79 to nearest ten’s place.

Output

 TRUNCATE(15.79 , -1)
 10

DATE AND TIME FUNCTIONS

Date functions operate on values of the DATE datatype.

1. CURDATE() / CURRENT_DATE() – This function returns the current date. E.g.

 SELECT CURDATE() ;

 Output

 CURDATE()
 2016-12-13

2. DATE() – This function extracts the date part from a date. E.g.

 SELECT DATE(‘2016-02-09’) ;

Output

 DATE(‘2016-02-09’)
 09

3. MONTH() – This function returns the month from the date passed. E.g.

 SELECT MONTH(‘2016-02-09’) ;

Output

 MONTH(‘2016-02-09’)

 02

4. YEAR() – This function returns the year part of a date. E.g.

 SELECT YEAR(‘2016-02-09’) ;

Output

 YEAR(‘2016-02-09’)

 2016

5. DAYNAME() – This function returns the name of weekday. E.g.

 SELECT DAYNAME(‘2016-02-09’) ;

Output

 DAYNAME(‘2016-12-14’)
 Wednesday

6. DAYOFMONTH() – This function returns the day of month. Returns value in range of 1 to 31.E.g.

 SELECT DAYOFMONTH(‘2016-12-14’) ;

Output

 DAYOFMONTH(‘2016-12-14’)

 14

7. DAYOFWEEK() – This function returns the day of week. Return the weekday index for date. (1=Sunday,

2=Monday,……., 7=Saturday)

 SELECT DAYOFWEEK(‘2016-12-14’) ;

Output

 DAYOFWEEK(‘2016-12-14’)

 4

8. DAYOFYEAR() – This function returns the day of the year. Returns the value between 1 and 366. E.g.

 SELECT DAYOFYEAR(‘2016-02-04) ;

Output

 DAYOFYEAR(‘2016-02-04’)

 35

9. NOW() – This function returns the current date and time.

 It returns a constant time that indicates the time at which the statement began to execute.

 e.g. SELECT NOW();

10. SYSDATE() – It also returns the current date but it return the time at which SYSDATE() executes. It differs from the

behavior for NOW(), which returns a constant time that indicates the time at which the statement began to execute.

 e.g. SELECT SYSDATE() ;

DATABASE TRANSACTIONS

TRANSACTION

A Transaction is a logical unit of work that must succeed or fail in its entirety. This statement means that a transaction

may involve many sub steps, which should either all be carried out successfully or all be ignored if some failure occurs.

A Transaction is an atomic operation which may not be divided into smaller operations.

Example of a Transaction

 Begin transaction
 Get balance from account X

 Calculate new balance as X – 1000

 Store new balance into database file

 Get balance from account Y

 Calculate new balance as Y + 1000

 Store new balance into database file

 End transaction

TRANSACTION PROPERTIES (ACID PROPERTIES)

1. ATOMICITY(All or None Concept) – This property ensures that either all operations of the transaction are carried out

or none are.

2. CONSISTENCY – This property implies that if the database was in a consistent state before the start of transaction

execution, then upon termination of transaction, the database will also be in a consistent state.

3. ISOLATION – This property implies that each transaction is unaware of other transactions executing concurrently in

the system.

4. DURABILITY – This property of a transaction ensures that after the successful completion of a transaction, the

changes made by it to the database persist, even if there are system failures.

TRANSACTION CONTROL COMMANDS (TCL)

 The TCL of MySQL consists of following commands :

1. BEGIN or START TRANSACTION – marks the beginning of a transaction.

2. COMMIT – Ends the current transaction by saving database changes and starts a new transaction.

3. ROLLBACK – Ends the current transaction by discarding database changes and starts a new transaction.

4. SAVEPOINT – Define breakpoints for the transaction to allow partial rollbacks.

5. SET AUTOCOMMIT – Enables or disables the default auto commit mode.

 START TRANSACTION

SET AUTOCOMMIT

By default, MySQL has autocommit ON, which means if you do not start a transaction explicitly through a BEGIN or

STATE TRANSACTION command, then every statement is considered one transaction and is committed there and then.

You can check the current setting by executing the following statement :

 mysql > select @@autocommit ;

 @@autocommit

 1

To disable autocommit , command is:

 SET autocommit = 0 ;

To enable autocommit, command is :

 SET autocommit = 1 ;

Q1: Given a table t3(code, grade , value).

1 G 300

2 K 600

3 B 200

Considering table t3, for the following series of statements, determine which changes will become permanent, and

what will be the output produced by last SELECT statement i.e., statement 7th.

 1. SELECT * FROM T3 ;

 2. INSERT INTO t3 VALUES(4, ‘A’ , 100) ;

 3. ROLLBACK WORK ;

Perform Inserts, Updates and

Deletes

Success ?

NO : ROLLBACK

Database before change

YES : COMMIT
Database after changes

1 means, autocommit is enabled

 4. DELETE FROM t3 WHERE CODE = 2;

 5. DELETE FROM t3 WHERE CODE = 4;

 6. ROLLBACK WORK;

 7. SELECT * FROM t3 ;

Q2. Give one difference between ROLLBACK and COMMIT command used in MySQL.

Q3. Given below is the ‘Emp’ table :

SET AUTOCOMMIT = 0 ;

INSERT INTO Emp VALUES(5 , ‘Fazaria’);

COMMIT ;

UPDATE Emp SET NAME = ‘Farzziya’ WHERE ENO = 5;

SAVEPOINT A ;

INSERT INTO Emp VALUES(6 , ‘Richards’);

SAVEPOINT B ;

INSERT INTO Emp VALUES(7, ‘Rajyalakshmi’);

SAVEPOINT C ;

ROLLBACK TO B ;

What will be the output of the following SQL query now ? SELECT * FROM Emp ;

Q4. If you have not executed the COMMIT command , executing which command will reverse all updates made during

the current work session in MySQL ?

Q5. What effect does SET AUTOCOMMIT have in transactions ?

Q6. What is a Transaction ? Which command is used to make changes done by a Transaction permanent on a

database?

ENO NAME

1 Anita Khanna
2 Bishmeet Singh

JOINS

- A join is a query that combines rows from two or more tables. In a join- query, more than

one table are listed in FROM clause.

Table : empl

EMPNO ENAME JOB SAL DEPTNO
8369 SMITH CLERK 2985 10

8499 ANYA SALESMAN 9870 20
8566 AMIR SALESMAN 8760 30

8698 BINA MANAGER 5643 20

Table : dept

DEPTNO DNAME LOC
10 ACCOUNTING NEW DELHI

20 RESEARCH CHENNAI

30 SALES KOLKATA
40 OPERATIONS MUMBAI

CARTESIAN PRODUCT/UNRESTRICTED JOIN/CROSS JOIN

- Consider the following query :

SELECT *

FROM EMPL, DEPT ;

This query will give you the Cartesian product i.e. all possible concatenations are formed of all rows

of both the tables EMPL and DEPT. Such an operation is also known as Unrestricted Join. It returns

n1 x n2 rows where n1 is number of rows in first table and n2 is number of rows in second table.

EQUI-JOIN

- The join in which columns are compared for equality, is called Equi - Join. In equi-join, all the

columns from joining table appear in the output even if they are identical.

e.g. SELECT * FROM empl, dept

 WHERE empl.deptno = dept.deptno ;

Q

Q: with reference to empl and dept table, find the location of employee SMITH.

ename column is present in empl and loc column is present in dept. In order to obtain the result, we

have to join two tables.

SELECT ENAME, LOC

FROM EMPL, DEPT

WHERE EMPL.DEPTNO = DEPT.DEPTNO AND ENAME=’SMITH’;

Q: Display details like department number, department name, employee number, employee

name, job and salary. And order the rows by employee number.

SELECT EMPL.deptno, dname,empno,ename,job,sal

FROM EMPL,DEPT

WHERE EMPL.DEPTNO=DEPT.DEPTNO

ORDER BY EMPL.DEPTNO;

QUALIFIED NAMES

Did you notice that in all the WHERE conditions of join queries given so far, the field(column) names

are given as: <tablename>.<columnname>

This type of field names are called qualified field names. Qualified field names are very useful in

identifying a field if the two joining tables have fields with same time. For example, if we say deptno

field from joining tables empl and dept, you’ll definitely ask- deptno field of which table ? To avoid

such an ambiguity, the qualified field names are used.

deptno column is appearing twice in output.

TABLE ALIAS

- A table alias is a temporary label given along with table name in FROM clause.

e.g.

 SELECT E.DEPTNO, DNAME,EMPNO,ENAME,JOB,SAL

 FROM EMPL E, DEPT D

 WHERE E.DEPTNO = DEPT.DEPTNO

 ORDER BY E.DEPTNO;

In above command table alias for EMPL table is E and for DEPT table , alias is D.

Q: Display details like department number, department name, employee number, employee

name, job and salary. And order the rows by employee number with department number. These

details should be only for employees earning atleast Rs. 6000 and of SALES department.

 SELECT E.DEPTNO, DNAME,EMPNO, ENAME, JOB, SAL

 FROM EMPL E, DEPT D

 WHERE E.DEPTNO = D.DEPTNO

 AND DNAME=’SALES’

 AND SAL>=6000

 ORDER BY E.DEPTNO;

NATURAL JOIN

By default, the results of an equijoin contain two identical columns. One of the two identical

columns can be eliminated by restating the query. This result is called a Natural join.

e.g. SELECT empl.*, dname, loc

 FROM empl,dept

 WHERE empl.deptno = dept.deptno ;

 empl.* means select all columns from empl table. This thing can be used with any table.

The join in which only one of the identical columns(coming from joined tables) exists, is called

Natural Join.

LEFT, RIGHT JOINS

When you join tables based on some condition, you may find that only some, not all rows from

either table match with rows of other table. When you display an equi join or natural join , it shows

only the matched rows. What if you want to know which all rows from a table did not match with

other. In such a case, MySQL left or right JOIN can be very helpful.

LEFT JOIN

- You can use LEFT JOIN clause in SELECT to produce left join i.e.

 SELECT <select-list>

 FROM <table1> LEFT JOIN <table2>

 ON <joining-condition>;

- When using LEFT JOIN all rows from the first table will be returned whether there are

matches in the second table or not. For unmatched rows of first table, NULL is shown in

columns of second table.

S1 S2

Roll_no Name Roll_no Class

1 A 2 III
2 B 4 IX

3 C 1 IV
4 D 3 V

5 E 7 I

6 F 8 II

 SELECT S1.ROLL_NO, NAME,CLASS

 FROM S1 LEFT JOIN S2 ON S1.ROLL_NO=S2.ROLL_NO;

RIGHT JOIN

- It works just like LEFT JOIN but with table order reversed. All rows from the second table are

going to be returned whether or not there are matches in the first table.

- You can use RIGHT JOIN in SELECT to produce right join i.e.

SELECT <select-list>

FROM <table1> RIGHT JOIN <table2> ON <joining-condition>;

e.g SELECT S1.ROLL_NO, NAME,CLASS

 FROM S1 RIGHT JOIN S2 ON S1.ROLL_NO=S2.ROLL_NO;

Q: In a database there are two tables:

Table: ITEM Table:BRAND

Item_Code Item_Name Price Item_Code Brand_Name

111 Refrigerator 90000 111 LG
222 Television 75000 222 Sony

333 Computer 42000 333 HCL
444 Washing Machine 27000 444 IFB

Write MySql queries for the following:

(i) To display Item_Code, Item_Name and corresponding Brand_Name of those Items, whose

price is between 20000 and 40000 (both values inclusive).

(ii) To display Item_Code, Price and Brand_Name of the item, which has Item_Name as

“Computer”.

(iii) To increase the price of all items by 10%.

Q: A table “Transport” in a database has degree 3 and cardinali ty 8. What is the number of rows and

columns in it ?

Q: Table Employee has 4 records and Table Dept has 3 records in it. Mr. Jain wants to display all

information stored in both of these related tables. He forgot to specify equi -join condition in the

query. How many rows will get displayed on execution of this query ?

Q: In a database there are two tables “ITEM” and “CUSTOMER” as shown below:

Table: ITEM Table: CUSTOMER

ID ItemName Company Price C_ID CustomerName City ID

1001 Moisturiser XYZ 40 01 Samridh Ltd New Delhi 1002

1002 Sanitizer LAC 35 05 Big Line Inc Mumbai 1005

1003 Bath Soap COP 25 12 97.8 New Delhi 1001

1004 Shampoo TAP 95 15 Tom N Jerry Bangalore 1003

1005 Lens Solution COP 350

 Write the commands in SQL queries for the following:

(i) To display the details of Item, whose price is in the range of 40 and 95 (Both values included).

(ii) To display the customername, city from table customer and ItemName and Price from table

Item with their corresponding matching ID.

(iii) To increase the price of all the Products by 50.

Q: A table FLIGHT has 4 rows and 2 columns and another table AIR hostess has 3 rows and 4

columns. How many rows and columns will be there if we obtain the Cartesian product of these two

tables ?

Q: Given below is the Table Patient.

Table : Patient

Name P_No Date_Admn Doc_No
Mrs. Vimla Jain P0001 2011-10-11 D201

Miss Ishita Kohli P0012 2011-10-11 D506
Mr. Vijay Verma P1002 2011-10-17 D201

Mr. Vijay Verma P1567 2011-11-22 D233

(i) Identify Primary Key in the table given above.

(ii) Write MySql query to add a column Department with data type varchar and size 30 in the

table patient.

Q: Write MySql command to create the Table Product including its Constraints.

 Table: PRODUCT

Name of Column Type Size Constraint
P_Id Decimal 4 Primary Key

P_Name Varchar 20

P_Company Varchar 20
Price Decimal 8 Not Null

Q: Write a MySQL command for creating a table ‘PAYMENT’ whose structure is given below:

Table : PAYMENT

Field Name Datatype Size Constraint
Loan_number Integer 4 Primary Key

Payment_number Varchar 3
Payment_date Date Not Null

Payment_amount Integer 8

Q: Write SQL command to create the Table Vehicle with given constraint.

Table : CHALLAN

COLUMN_NAME DATATYPE(SIZE) CONSTRAINT

Challan_No Decimal(10) Primary Key
Ch_Date Date

RegNo Char(10)
Offence Decimal(3)

Q: Consider the tables HANDSETS and CUSTOMER given below:

Table : Handsets Table: Customer

SetCode SetName TouchScreen PhoneCost CustNo SetNo CustAddress

N1 Nokia 2G N 5000 1 N2 Delhi
N2 Nokia 3G Y 8000 2 B1 Mumbai

B1 BlackBerry N 14000 3 N2 Mumbai

 4 N1 Kolkata
 5 B1 Delhi

With reference to these tables, Write commands in SQL for (i) and (ii) and output for (iii) below:

(i) Display the CustNo, CustAddress and Corresponding SetName for each customer.

(ii) Display the Cusomer Details for each customer who uses a Nokia handset.

(iii) Select Setno, SetName

From Handsets, Customer

Where setno =setcode

AND custAddress = ‘Delhi’;

Q: In a database there are two tables Company and Model as shown below:

Table : Company Table:Model

CompID CompName CompHO ContPerson ModelID CompID ModelCost

1 Titan Okhla CB. Ajit T020 1 2000
2 Maxima Shahdara V.P.Kohli M032 4 2500

3 Ajanta Najafgarh R.Mehta M059 2 7000

(i) Identify the foreign key column in the table model.

(ii) Check every value in CompID column of both the tables.Do you find any discrepancy ?

(iii) How many rows and columns will be there in the Cartesian product of these two tables ?

(iv) Write SQL command to change Model cost to 3500 for ModelID T020 in Model Table.

CHAPTER-17 IT APPLICATIONS

E-GOVERNANCE

E-governance refers to the application of electronic means in governance with an aim of

fulfilling the requirements of common man at affordable costs and in fastest possible

time.

MAJOR E-GOVERNANCE PROJECTS IN INDIA

1. Consular Passport and VISA Division (Indian Passport Office)

- The Consular Passport and VISA Division, a division of Ministry of External Affairs, is

the Indian Passport office for people of India. It is responsible for issuing Indian

Passports.

 (URL: http://passport.gov.in)

2. Income Tax Portal

- Income tax portal include: preparation and filling individual Income Tax returns and

TDS returns by tax deductore and filling and tracking of PAN/TAN applications.

(URL: http://www.incometaxindia.gov.in)

3. DRDO

- It is a network of more than 50 laboratories which are deeply engaged in developing

defence technologies.

(URL: drdo.nic.in)

4. Supreme Court of India

- It is the highest judicial body in India. It has also its web-presence in the form of a

website that can be used to know about Supreme Court Judgments.

(URL: http://supremecourtofindia.nic.in)

5. RTI Portal

Right to Information Act 2005 mandates timely response to citizen requests for

government information. (URL: rti.gov.in)

BENEFITS OF E-GOVERNANCE TO COMMON MAN

1. The numbers of trips to government offices reduced by nearly 11% to 27%.

2. Waiting time is reduced significantly.

3. Bribes reduced by 50% to 90%.

4. All above factors resulted in reduced cost of availing the service.

POSITIVE IMPACTS OF E-GOVERNANCE

1. E-governance programs have improved the efficiency of administration and service

delivery.

2. E-governance programs have resulted in reduced waiting time before the work is

done.

3. People have also benefitted from e-governance in the form of reduced cost of

availing the service.

4. E-governance has proved successful in keeping a tab on corruption to some extent.
5. E-governance programs have resulted in increased public participation.

NEGATIVE IMPACTS OF E-GOVERNANCE

1. People living in rural and remote areas could not benefit from the e-governance

initiatives because of lack of computerization in these areas.

2. Lack of awareness about the e-governance programs has prevented people to

benefit from it.

3. Not all services are part of e-governance, so manual methods cannot be avoided.

4. Incompatibility of software and hardware has prevented people to benefit from it.

5. Some people find it inconvenient to make payments online using credit cards.

E-BUSINESS

- Electronic Commerce (EC or e-commerce) describes the process of buying, selling,

transferring, or exchange products, services and information via computer networks,

including the Internet.

- E-Business refer to a broader definition of EC, not just the buying and selling of

goods and services, but also servicing customers, collaborating with business

partners, conducting e-learning, and conducting electronic transactions within an
organization.

MAJOR E- BUSINESS PORTALS

1. IRCTC Portal

- The Indian Railways Catering and Tourism Corporation (IRCTC) is a subsidiary of the

Indian Railways.

(URL: www.irctc.co.in)

2. Online reservation site Yatra.com

- Yatra.com provides airline reservation, flight ticket booking service online.

(URL: www.yatra.com)

3. E- Banking Site of State Bank of India

- This portal serves corporate banking services, individual banking services, loan

lending and many more.

(URL:

http://www.statebankofindia.com)

4. Online store Amazon.com

- The amazon.com was launched online in 1995. It is an online store which sells wide
variety of products. (URL: www.amazon.com)

BENEFITS OF E-BUSINESS TO CUSTOMERS

1. Improved speed of response

2. Cost savings

3. Improved efficiency and productivity

4. Improved customer service

BENEFITS OF E-BUSINESS TO SELLER

1. Offers opportunity to increase sales

2. Offers opportunity to access new markets across the globe

3. Provides convenience and comfort for customers.

4. Allow 24 x 7 access to the firm’s products and services.

POSITIVE IMPACTS OF E-BUSINESS/E-COMMERCE

1. INCREASE IN THE INTERNET USERS

- A significant segment of society is now using the internet for purchasing products

online. Most of them are college going students and young persons.

2. MIDDLE CLASS ATTRACTED TOWARDS LOW COST FLIGHTS

- With the help of certain e-business sites, people are easily finding low cost flights.

3. CHANGE IN ONLINE SHOPPING HABITS

- Online offers are given at attractive discounts and prices. This convenience coupled

with better bargains have brought changes in the online shopping habits of buyers.

4. INCREASE IN ONLINE PAYMENTS

- Security of transactions online has been a major barrier to the growth of the E-

business. However, with secure payment interface being provided by the websites,

the Internet users are fast overcoming their apprehensions. According to major
players, 65%-90% of their customers pay through credit cards.

 NEGATIVE IMPACTS OF E-BUSINESS/ E-COMMERCE

1. POOR TELECOM AND INFRASTRUCTURE FOR RELIABLE CONNECTIVITY

- Even after a telecom boom, Internet connectivity is still slow, access costs are high

and connections are unreliable. All this has prevented users to rely on e-business.

2. MULTIPLE ISSUES OF TRUST

- There have been cases where the online buyers have not received the goods

matching up to their expectations.

- Sometimes, the goods are faulty, or sometimes, the sizes or looks differ from what

they perceived. This resulted into violation of their trust on e-businesses.

E-LEARNING
- It is a flexible term used to describe a means of teaching through technology such as

a network, browser, CDROM or DVD multimedia platforms.

MAJOR E-LEANING SITES

1. w3schools.com

- The w3schools.com hosts thousands of online web tutorials pertaining the domain of

web building. (URL : www.w3schools.com)

2. exe project

- It is developed as a freely available open source authoring application to assist

teachers and academics in the publishing of web content without the need to

become proficient in HTML or XML. (URL : exelearning.org)

3. Xerte Project

- It is open source e-learning developer tool. The Xerte Project provides a full suite of

tools for e-learning developer and content authors.

 (URL: www.nottingham.ac.uk/xerte)

BENEFITS OF E-LEARNING

1. AVAILABLITY OF SAME COURSE TO MILLIONS

- As e-learning course are available without the boundaries of geography, same

courses are available to students from all across the globe.

- A student from remote interior of India can enroll herself to a high rank university of

States without actually going there and enhance her skills.

- This people from areas where the physical reach of education is limited are actually

benefitting from it.

2. BOON FOR WORKING CLASS

- The flexibility offered by e-learning in terms of time and learning pace has proved a

boon for the working people.

- Now thousands of working people are enhancing their skills at their time, at their

own pace.

3. SELF PACED LEARNING

- It’s self-paced. Most e-learning programs can be taken when needed.

4. SELF MOTIVATED INTERACTIVITY

- The self-motivation engage users, pushing them rather than pulling them through
training.

NEGATIVE IMPACTS/DISADVANTAGES OF E-LEARNING

1. HIGH DROPOUT RATE

- It has been observed that while e-learning has been popular with working class and

retired people, a percentage of beginners often drop out the course midway. The

reason for this are tat e-learning course lack interactivity and follow up.

2. Technology issues of the learners are most commonly technophobia and

unavailability of required technologies.

3. Portability of materials has become a strength of e-learning, but still does not rival

that of printed workbooks or reference material.

4. Reduced social and cultural interaction can be a drawback.

5. Inappropriate content for e-learning may exist according to some experts, though

are limited in number.

GUI (Graphical user interface)

- It interacts with a user through a graphical interface, which actually a collection of
elements called objects. Objects are visible to user and are used to perform tasks.

FRONT END

- The front-end (generally of a GUI) is the end that interacts with the user and collects

input from the user.

BACKEND

- The backend is the end that is not visible but that processes the user-requests as

received by the front-end.

