DAV PUBLIC SCHOOL, CHANDRASEKHARPUR, BHUBANESWAR-21 MTHE 2019

JUNIOR (VII & VIII)

-		1004	CE FOR ROUGH WORK	()	
	(a) 9	(b) 10	(c) 11	(d) 0	
6.	The sum of $$	$\frac{1}{2+1} + \frac{1}{\sqrt{3}+\sqrt{2}} + \frac{1}{\sqrt{4}}$	$\frac{1}{1+\sqrt{3}} + \dots \frac{1}{\sqrt{100}+\sqrt{99}}$	is equal to	2
			1 1		
2.	(a) 4 (a) 4	(b) 5	(c) 6	(d) 7	
5.	If $2^{x-1} + 2^{x+1} - 32$	20, then x equals	in a bound		
	(a) $\frac{11}{8}$	(b) $\frac{11}{24}$	(c) $\frac{11}{48}$	(d) ${96}$	
4.	If $2^x = 4^y = 8^z$ a	nd $xyz = 288$, then	$\frac{1}{2x} + \frac{1}{4y} + \frac{1}{8z}$ equals	5	ų.
	(a) 1	(0) 5	(0) .		
3.		(b) 3	(c) 4	(d) 2	
2	Find the velue	of x if $[3^{2x-2}+10]$ ÷	13 = 7		
	(a) 8	(b) 4	(c) 2	(d) 1	
2.		of four consecutive four consecutive for the square, then the the square of the square	ne value of p is	s increased by a nati	aral number p
	(a) 8, 5		(c) 22, 19		
	respectively			(d) 6, 8	
1.	If $\sqrt{(x-1)(y+2)}$	=7, x and y being	positive whole hui	nbers, then the values	, or in units y as a

7. The sum of two numbers is 684 and their HCF is 57. The number of possible pairs of such number is
(a) 2 (b) 3 (c) 4 (d) none of these

8. Find the greatest number of six digits which on being divided by 6, 7, 8, 9 and 10 leaves 4, 5, 6, 7 and 8 as remainder respectively.
(a) 997920 (b) 997918 (c) 997922 (d) 997930

9. If a + b + c = 0, then what is the value of $(a + b - c)^3 + (c + a - b)^3 + (b + c - a)^3$? (a) $-8(a^3 + b^3 + c^3)$ (b) $a^3 + b^3 + c^3$ (c) 24abc (d) -24abc

10. If
$$(a^2 + b^2)^3 = (a^3 + b^3)^2$$
 and $ab \neq 0$, then $(\frac{a}{b} + \frac{b}{a})^6$ is equal to
(a) $\frac{a^6 + b^6}{a^3 b^3}$ (b) $\frac{64}{729}$ (c) 1 (d) $\frac{a^6 + a^3 b^3 + b^6}{a^2 b^4 + a^4 b^2}$

11. If $(x^{3/2} - xy^{1/2} + x^{1/2}y - y^{3/2})$ is divided $(x^{1/2} - y^{1/2})$, the quotient is : (a) x + y (b) x - y (c) $x^{1/2} + y^{1/2}$ (d) $x^2 - y^2$

(SPACE FOR ROUGH WORK)

- 12. factorise: $x^{3} + \frac{1}{x^{3}} 2$ (a) $\left(x - \frac{1}{x}\right)\left(x^{2} + 1 + \frac{1}{x^{2}}\right)$ (b) $\left(x + \frac{1}{x} + 1\right)\left(x^{2} + \frac{1}{x^{2}} - \frac{1}{x} - x\right)$ (c) $\left(x + \frac{1}{x}\right)\left(x^{2} - 1 + \frac{1}{x^{2}}\right)$ (d) $\left(x + \frac{1}{x} - 1\right)\left(x^{2} + \frac{1}{x^{2}} + \frac{1}{x} + x\right)$ 13. Factorise: $a^{2} + \frac{1}{a^{2}} + 3 - 2a - \frac{2}{a}$
 - (a) $\left(a + \frac{1}{a} 1\right) \left(a \frac{1}{a} + 1\right)$ (b) $\left(a + \frac{1}{a} - 1\right) \left(a + \frac{1}{a} + 1\right)$ (c) $\left(a + \frac{1}{a} + 1\right) \left(a + \frac{1}{a} + 1\right)$ (d) $\left(a + \frac{1}{a} - 1\right) \left(a + \frac{1}{a} - 1\right)$

14. Five times A's money added to B's money is more than Rs.51.00. Three times A's money minus B's money is Rs.21.00. If a represents A's money in Rs and b represents B's money in Rs, then :

(a) a > 9, b > 6(b) a > 9, b < 6(c) a > 9, b = 6(d) a > 9, but we can put no bounds on b

15. A sports club has 130 members. An increase of 10% in the number of men and 20% in the number of ladies brought up the membership of 148. How many men and ladies were there originally?

(a) 90 men, 40 women	(b) 80 men, 50 women
(c) 60 men, 70 women	(d) 50 men, 80 women

16. The difference of mother's age and her daughter's age is 21 years and the twelfth part of the product of their ages is less than the mother's age by 18 years. The mother's age is (a) 22 years
(b) 32 years
(c) 24 years
(d) 42 years

(SPACE	FOR	ROUGH	WORK)
--------	-----	-------	-------

	to mountains ar	nd the remaining 15	are on the banks of	square root of the herd has gone a river. The total number of cows
	is:			
	(a) 6	(b) 100	(c) 63	(d) 36
8.	downstream to	the original point in	4 hrs 30 min. The s	a go 30 km upstream and return speed of the stream is (d) 15 km/hr
	(a) 5 km/hr	(b) 8 km/hr	(C) 10 KIII/II	(0) 10 1111
				10 - 10 - 52 mil 201 - 52
19.	How many inte	egers are there in the	solution set of $ 2x+$	$-6 <\frac{19}{2}$?
	(a) None	(b) Two	(c) Fourteen	(d) Nine
20.	If $a \cdot (b + c) =$	1 : 3 and c : (a + b)	= 5:7, then b: (a -	c) is equal to
20.	(a) $1:2$	(b) 2 : 3	(c) 1 : 3	(d) 2 : 1
				ba comon statute and a chill
		ax-b	y + by - cz	$\frac{cz-ax}{(c+a)(z-x)}$ is equal to
21.	If $x : a = y : b$	= z : c then (a+b)(x)	(-y) $(b+c)(y-z)$	(c+a)(z-x) is equal to
	(a) 1	(b) 2	(c) 3	(d) 0 🕶
22.	In what ratio	should quantities of	mixtures be taken	he ratio 4 : 5 and 5 : 1 respectively from A to B to form a mixture in
	which milk to	water is in the ratio	5:4?	
	(a) 2 : 5	(b) 2 : 3	(c) 4 : 3	(d) 5 : 2
23.	Concentration	ns of three solutions a he ratio 3 : 5 : x resul	A, B and C are 20% ting in a solution of	, 30% and 40% respectively. The f 30% concentration. Find x.
	(a) 5	(b) 2	(c) 3	(d) 4

- 24. If the price of a book if first decreased by 25% and then increased by 20%, the net change in the price of the book is
 (a) 10% decrease
 (b) 5% decrease
 (c) No change
 (d) 5% increase
- 25. The price of an article was increased by r%. Later the new price was decreased by r%. If the latest price was Rs 1, then the original price was
 - (a) Rs 1 (b) Rs $\left(\frac{1-r^2}{100}\right)$ (c) Rs $\frac{\sqrt{1-r^2}}{100}$ (d) Rs $\frac{10000}{10000-r^2}$
- A solution of salt and water contains 15% salt by weight 30 kg of water evaporates and the solution now contains 20% of the salt. The original quantity of the solution is
 (a) 100 kg
 (b) 110 kg
 (c) 115 kg
 (d) 120 kg
- A dishonest dealer uses a scale of 90 cm instead of a metre scale and claims to sell at cost price. His profit is
 - (a) 9% (b) 10% (c) $10\frac{9}{11}$ % (d) $11\frac{1}{9}$ %
- 28. If 7% of the sale price of an article is equivalent to 8% of its cost price and 9% of its sale price exceeds 10% of its cost price by Rs 1, then what is the cost of the article ?
 (a) Rs 400 (b) Rs 350 (c) Rs 300 (d) Rs 280
- 29. A person sold his watch for Rs 144. If the percentage of his profit was equal to the cost price, then the watch would have cost him
 (a) Rs 100
 (b) Rs 90
 (c) Rs 85
 (d) Rs 80
- 30. At what per cent above the cost price must a shopkeeper mark his goods so that he gains 20% even after giving a discount of 10% on the marked price.
 - (a) 25% (b) 30% (c) $33\frac{1}{3}\%$ (d) $37\frac{1}{2}\%$ (SPACE FOR ROUGH WORK)

31.	· · ·			and earned a profit of 23.5% f no discount was offered?
	(a) 24.5	(b) 25	(c) 28.5	(d) 30
32.	If the average o numbers is	f m numbers is n ² and	that of n numbers is	s m ² , then the average of $(m + n)$
	(a) m – n	(b) mn	(c) $(m + n)$	(d) m/n
33.	If the average of	of a, b, c is M and ab	+ bc $+$ ca $=$ 0, then	the average of a^2 , b^2 , c^2 is
	(a) M ²	(b) 3M ²	(c) 6M ²	(d) 9M ²
34.	innings exceed average of the re	s his lowest score by	172 runs. If these	50 runs. His highest score in an two innings are excluded, the his highest score, scored in one
	innings. (a) 175	(b) 180	(c) 174	(d) 185
35.		ed at 5% p.a. simple in the amount will becom		st is added to the principal afte
	(a) 15 years	(b) $16\frac{2}{3}$ years	(c) 18 years	(d) 20 years
36.		y at compound interests will it be nine times		times of itself in three years. In
	(a) 6 years	(b) 5 years	(c) 9 years	(d) 7 years
37.	in such a way th			um 233 decays at a constant rate now many years will it reduce to
	25%?			

-

ě.

- 38. 12 men and 16 boys can do a piece of work in 5 days; 13 men and 24 boys can do it in 4 days. The ratio of the daily work done by a man to that of a boy is
 (a) 2:1
 (b) 3:1
 (c) 3:2
 (d) 5:4
- 39. Two pipes A and B can fill a cistern is 12 minutes and 15 minutes respectively but a third pipe C can empty the full tank in 6 minutes. A and B are kept open for 5 minutes in the beginning and then C is also opened. In what time will the cistern be emptied ?
 (a) 30 min
 (b) 33 min
 (c) 37.5 min
 (d) 45 min
- 40. A and B run a kilometre and A wins by 25 seconds. A and C run a kilometre and A wins by 275 m. B and C run the same distance and B wins by 30 sec. The time taken by A to run a kilometer is
 (a) 2 min 25 sec
 (b) 2 min 50 sec
 (c) 3 min 20 sec
 (d) 3 min 30 sec
- 41. Twice the speed of a boat downstream is equal to thrice the speed upstream. The ratio of its speed in still water to its speed in current is
 (a) 1:5
 (b) 1:3
 (c) 5:1
 (d) 2:3
- 42. At his usual rowing rate, Rahul can travel 12 miles downstream in a certain river in 6 hours less than it takes him to travel the same distance upsteam. But if he could double his usual rowing rate for his 24 mile round trip, the downstream 12 miles would then take only one hour less than the upstream 12 miles. What is the speed of the current in miles per hour?
- (a) $1\frac{1}{3}$ (b) $1\frac{2}{3}$ (c) $2\frac{1}{3}$ (d) $2\frac{2}{3}$ 43. In the given figure, DE is parallel to BC and the ratio of the areas of
- ΔADE and trapezium BDEC is 4 : 5. What is DE : BC?

(a) 1 : 2	(b) 2 : 3
(c) 4 : 5	(d) None of these

B

44.	In the given figure, if $PA = x$, $RC = y$ and $QB = z$, then which one of the following is correct?
	(a) $2y = x + z$
	(a) $2y = x + Z$ (b) $4y = x + Z$
	$ \begin{array}{c} (0) + y = x + z \\ (c) xy + yz = xz \end{array} $
	$(d) xy + xz = yz \qquad \qquad B \qquad C \qquad A$
45.	In $\triangle PQR$, $PD \perp QR$ such that D lies on QR. If PQ = a, PR = b, QD = c and DR = d, then
671.5	(a) $(a - d)(a + d) = (b - c)(b + c)$ (c) $(a - c)(b - d) = (a + c)(b + d)$
	(c) $(a - b)(a + b) = (c + d)(c - d)$ (d) $(a - b)(c - d) = (a + b)(c + d)$
	the second of the second se
46.	In the given figure $\triangle ABC$ is a right-angled at B. AD and CE are the
	two medians drawn from A and C respectively. If AC = 5 cm and
	$AD = \frac{3\sqrt{5}}{2}$ cm, then CE equals
	$AD = \frac{1}{2}$ cm, then CE equals
	(a) 2 cm (b) $2\sqrt{5}$ cm (b) $2\sqrt{5}$ cm
	(c) $5\sqrt{2}$ cm (d) $3\sqrt{2}$ cm
47.	AB CDE is a regular pentagon with sides of length 6 cm.
	CD is also a side of a regular polygon with n sides. Given Δ
	that $\angle EDF = 90^\circ$, find <i>n</i> .
	(a) 18° (b) 10°
	(c) 20° (d) 12°
48.	If the figure shown here, a circle touches the side BC of a
	triangle ABC at P and AB and AC produced at Q and R
	respectively. What is AQ equal to?
	(a) One-third of the perimeter of $\triangle ABC$
	(b) Half of the perimeter of $\triangle ABC$
	(c) Two-third of the perimeter of $\triangle ABC$
	(d) Three-fourth of the perimeter of ΔABC

49. In the given figure, RST is the tangent to the circel with centre O, at S. AOS is a straight line BO || RT and $\triangle ORS = 46^\circ$. Then $\angle BAC$ equals

(a) 22° (b) 46° (c) 23° (d) 32°

50. In the given figure, ABCD is a square. M is the mid-point of AB and $PQ \perp CM$. Which of the following statements is not true?

- (a) AM = MB (b) CP = CQ(c) CP = CB (d) PM = MQ
- 51. A circle is inscribed in an equilateral triangle of side a. Whiat is the area of any square inscribed in the circle ?

C

(a) $\frac{a^2}{3}$ (b) $\frac{a^2}{4}$ (c) $\frac{a^2}{6}$ (d) $\frac{a^2}{8}$ 52. What is the area of the plot shown in the figure ? (a) $\frac{1}{2}(az+by+ct+dx)$ (b) $\frac{1}{2}(bt+cx+ay+az)$ (c) $\frac{1}{2}(cx+bt+by+az)$

(d)
$$\frac{1}{2}(d+t)(c+x) + \frac{1}{2}(a+b)(y+z)$$

(SPACE FOR ROUGH WORK)

	$\sum_{n=1}^{\infty} \text{Let } Z_{n} \text{ be the set o} $ of integers, E the		egers, Z_p be the set of p rs and P the set of p			ie set
	(a) $E \cap P = \phi$	(b) $Z_N \cap Z_p = \phi$	(c) $Z - Z_N = Z_P$	(d) $Z_N \Delta Z_P = Z$	-{0}	
54.	When a number P same divisor then	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		. If twice of P is o	divided by	y the
	(a) 0	(b) 1	(c) 2	(d) 6	(6122) (61	×.
55.	$4^{61} + 4^{62} + 4^{63} + 4^{63}$	⁶⁴ is divisible by				
	(a) 3	(b) 10	(c) 11	(d) 13		
56.	What will be the m	issing digits in the	following product a	nd find a, b, c, d, e,	frespecti	vely.
	(a) 2, 6, 8, 7, 4, 3	TRADEWAY - TO SAME AND HERSELEASIN		1	la4	
	(c) 3, 4, 6, 2, 8, 7	(d) 3, 4, 6, 2, 7, 3	8	NOLD) 0.2 >	(3b) 3 c 8	
				e /	4	
				f 5	d 8	
57.	Which of the follo	owing is the square	e root of $7-4\sqrt{3}$?	f 5	d 8	
57.				f 5 (d) None of the		
57.	Which of the follo (a) $2-\sqrt{3}$			The states of the second se		
57.	(a) $2-\sqrt{3}$ Findout (A + B +	(b) $5-\sqrt{3}$ C + D) such that	(c) $2-\sqrt{5}$ AB×CB = DDD v	(d) None of the	se	digit
	(a) $2-\sqrt{3}$	(b) $5-\sqrt{3}$ C + D) such that	(c) $2-\sqrt{5}$ AB×CB = DDD v	(d) None of the	se	digit
	(a) $2-\sqrt{3}$ Findout (A + B + numbers and DDD	(b) $5-\sqrt{3}$ C + D) such that D is a three digit nu	(c) $2-\sqrt{5}$ AB×CB = DDD v mber	(d) None of the where AB and CB	se	digit
	(a) $2-\sqrt{3}$ Findout (A + B + numbers and DDD	(b) $5-\sqrt{3}$ C + D) such that D is a three digit nu (b) 19	(c) $2-\sqrt{5}$ AB _× CB = DDD weights mber (c) 17	(d) None of the where AB and CB	se	digit
58.	(a) $2-\sqrt{3}$ Findout (A + B + numbers and DDD (a) 21	(b) $5-\sqrt{3}$ C + D) such that D is a three digit nu (b) 19	(c) $2-\sqrt{5}$ AB _× CB = DDD weights mber (c) 17	(d) None of the where AB and CB	se are two	digit
58.	(a) $2-\sqrt{3}$ Findout (A + B + numbers and DDE (a) 21 What is the remain (a) 0	(b) $5-\sqrt{3}$ C + D) such that D is a three digit nu (b) 19 nder when 5^{87} is di (b) 5	(c) $2-\sqrt{5}$ AB×CB = DDD we mber (c) 17 vided by 15 ?	(d) None of the where AB and CB (d) 18 (d) None of the	se are two	
58.	(a) $2-\sqrt{3}$ Findout (A + B + numbers and DDE (a) 21 What is the remain (a) 0	(b) $5-\sqrt{3}$ C + D) such that D is a three digit nu (b) 19 ander when 5^{87} is di (b) 5 	(c) $2-\sqrt{5}$ AB×CB = DDD we mber (c) 17 vided by 15 ? (c) 10	(d) None of the where AB and CB (d) 18 (d) None of the	se are two	