ANNEXURE -A

	HALF YEARLY			CHOOLS, BJECT: BI			55 : XII,SI	E T-01	
		BLUE	E PRINT (OF QUES'	TION PAI	PER			
Sl No.	Units	Marks Allotted in Syllabus	MCQ (12 Nos.)	A&R (4 Nos.)	SA (5 Nos.)	LA-I (7 Nos.)	CASE BASED (2 Nos.)	LA-II (3 Nos.)	TOT AL (33 NOS.)
1	DEDDODUCTION	18	Q1(1) Q2(1) Q3(1) Q4(1)	012(1)	Q17(2)	Q22(3)		Q31(5) OR	9(18)
1	REPRODUCTION GENETICS AND EVOLUTION	24	Q5(1) Q6(1) Q7(1) Q8(1)	Q13(1) Q14(1)	Q18(2) Q19(2) OR	Q23(3) Q24(3) Q25(3)	Q29(4)	Q32(5) OR	11(24)
3	BIOLOGY & HUMAN WELFARE	14	Q9(1)	Q15(1)	Q20(2)	Q26(3) Q28(3) OR	Q30(4)		6(14)
4	BIOTECHNOLOGY & ITS APPLICATIONS	14	Q10(1) Q11(1) Q12(1)	Q16(1)	Q21(3)	Q27(3) Q28(3)		Q33(5) OR	7(14)
	MARKS	70	12	04	10	21	08	15	33(70)

ANNEXURE -B

DAV PUBLIC SCHOOLS, ODISHA ZONE

HALF YEARLY EXAM 2023-24 SUBJECT: BIOLOGY (044) CLASS : XII,SET-01

		QUESTION WISE ANA	LYSIS	
		-	Mark	
		Forms of Questions - (MCQ	S	
		,A & R TYPE, SA, LA-	Allott	Question no for (R)& (U), (Ap),
SL.NO	Units	I,CBQ, LA-II)	ed	(An) (E)&(C),
				(K)& (U):- 2,3,4,17, 22,23, 31
		MCQ:- 1,2,3,4		
		A & R:-13		(Ap):-1,13
		SA:-17		
		LA-I:-22,23		(An) (E)&(C):-nil
	REPRODUCTI	Case:-Nil		
1	ON	LA-II:-31	18	
		MCQ:-5,6,7,8		(K)& (U): 7,29,32
		A & R:-14		
		SA:-18,19,		(Ap):-6,8,24,25
	GENETICSAN	LA-I:-24,25		
	D EVOLUTION	CBQ:-29		(An) (E)&(C):-5,14,18,19
2		LA-II:-32	24	
		MCQ:-9		(K)& (U):-9,15 ,20,26
		A & R:-15		
		SA:-20		(Ap):-30
	BIOLOGY &	LA-I:-26,28		
	HUMAN	CBQ:-30		(An) (E)&(C):-28
3	WELFARE		14	
		MCQ:-10,11,12		(K)& (U):-11,12
		A & R:- 16		
	BIOTECHNOL	SA:-21		(Ap):-10,16,21,27
	OGY & ITS	LA-I:-27		
	APPLICATION	LA-II:-33		(An) (E)&(C):-33
4	S		14	
		33(70)		
TOTAL		33(10)		

Knowledge and understanding - 50% (35 marks)

Applications 30% (21 marks)

Analysis, Evaluate and create 20% (14 marks)

		ANNEX	URE –C	l ,	
	DAV PUBLIC SCHO	OLS, ODISHA ZON	E		
	HALF YEARLY EXAM-2023-24, S	SUBJECT-BIOLOGY	Y CLASS	S: XII	
	MARKING SC	HEME -SET-1			
QSTN NO	Value Points		Marks Allotte d	Total Marks	Page no of old NCER T /Text book
1	c) 9n		1	1	26
2	a) being a diploid tissue		1	1	36
3	(d) Trophoblast Inner cell mass get attached to the endometrium differentiant	ated as embryo	1	1	52
4	a)Point P		1	1	61
5	d) 0:1:31		1	1	105
6	c)Down's syndrome		1	1	90
7	d) A-iv, B-iii, C-i, D-ii		1	1	112,11 7
8	b) Divergent evolution leads to formation of homolog	ous organs.	1	1	131
9	c. Macrophages- Mucus-secreting cells that trap n body.	icrobes entering the	1	1	150
10	c) Probe hybridizes to its complementary DNA \rightarrow Autoradiography \rightarrow mutated gene does no photographic film.	ot appear on the	1	1	212
11	b. EcoRI, BamHI,ampR,Ori		1	1	199
12	d). Patient does not require periodic infusion of su- engineered lymphocytes	ch genetically	1	1	211
13	c. A is true but R is false		1	1	38

14	a. Both assertion and reason are true, and the reason is the correct explanation of the assertion.	1	1	98
15	d) A is false but R is true.	1	1	188
16	b) Both A and R are true and R is not the correct explanation of A.	1	1	202
17	Section-B			
	a) A - Estrogen , B – Progesterone	¹⁄₂x4	2	51
	b) A –Proliferative phase/Ovulatory phase, B – Secretory phase			
18	a) B- Transcription, cytoplasm b)3'-5'	1⁄2x2	2	109
	c)Nucleotide triphosphates	1⁄2		
	OR	1⁄2		
	a) Cross B, the strength of crossing over is high.- If distance between two genes present in one chromosome is more,	1/2	2	136,13
	occurrence of crossing over is more, if distance is less between two		2	7
	genes, occurrence of crossing over is less.	1/2		
	b) Cross A- genotypes of recombinant female: y+y w+ w	1⁄2		
	Cross B- genotype of recombinant male: w+wm+m	1/2		
19	Test cross	1/2	2	
	In a test cross the plant with dominant phenotype is crossed with			
	recessive parent.	1/		75
	PP x pp(Punnet square)	1/2		75
		1⁄2		
	If all plants produced purple flowers then the dominant trait is pure breed(homozygous dominant).	1⁄2		
20	A-Sporozoite	¹ ∕2 x4	2	148
	B-Asexual reproduction C-Haemozoin			
	D-Gut of Mosquito			
21	a. Simple stirred tank bioreactor, A stirred-tank reactor is cylindrical in	¹ ∕₂ x 2	2	204
	shape or having a curved base that simplifies the mixing of the reactor substances .			
	b. Flat bladed impeller facilitates even mixing & oxygen availability			
	throughout bioreactors.	1/2		
	c.A bioreactor provides the optimal conditions for achieving the	1/2		
	desired products by providing optimum growth conditions like temp., pH, oxygen, substrate, salts, vitamins.	, 2		
22	Section-C	1/2+1/2	3	60
	a) A-implants, B-Copper-T			61

	 b) Implants inhibit ovulation and implantation as well as the quality of cervical mucus to prevent /retard entry of sperms Release of cu ions suppresses the sperm motility and the fertilizing capacity of sperms. c) All RTIs are spread by sexual contacts. Thus, all RTIs are STDs. Example-Syphilis But All STDs are not RTIs as they don't affect reproductive tracts. Example: HIV, Hepatitis B or C 	1/2+1/2 1/2+1/2		
23	Diagram. () Pollen tube Pollen tube Polar nuclei Egg cell Synergid Micropyle	1 Labeli ngs ½x4	3	32
24	DNA Fingerprinting i.Isolation of DNA ii.Digestion of DNA into small fragments by RE iii.Separation of DNA bands by gel electrophoresis iv.Transfer to nitrocellulose membrane(Blotting) v.Hybridisation with labelled VNTR probes and Autoradiography	1/2 1/2x5	3	121
25	 a) Genetic drift. Sometimes the change in allele frequency is so different in the new sample of population that they become a different species/ The original drifted population becomes founders and the effect is called founder effect. 	1/2	3	133
	b)p2+2pq +q2=1	1⁄2		
	c)More individuals acquire peripheral character value at both ends of distribution curve	1		
	Fig: Disruptive selection	1⁄2		

 (i) The chemical nature of the coat: Viral protein coat. (ii) Enzyme B - Viral DNA is produced by the enzyme reverse transcriptase. (Process called reverse transcription.) X: viral RNA introduced into a cell, C = Viral DNA. (iii) Host cell (D) = Macrophage. iv) helper T-lymphocytes. OR a) The first infection of chicken pox produces a primary response and antibodies are generated against chicken pox virus, subsequent encounter with the same virus elicit a highly intensified secondary response, due to the memory cells formed during the first encounter.	1/2 1/2 x 3 1/2 1/2 1/2	3	155
X: viral RNA introduced into a cell, C = Viral DNA. (iii) Host cell (D) = Macrophage. iv) helper T-lymphocytes. OR a)The first infection of chicken pox produces a primary response and antibodies are generated against chicken pox virus, subsequent encounter with the same virus elicit a highly intensified secondary response, due to the memory cells formed during the first encounter.	1/2		
iv) helper T-lymphocytes. OR a)The first infection of chicken pox produces a primary response and antibodies are generated against chicken pox virus, subsequent encounter with the same virus elicit a highly intensified secondary response, due to the memory cells formed during the first encounter.			
OR a)The first infection of chicken pox produces a primary response and antibodies are generated against chicken pox virus, subsequent encounter with the same virus elicit a highly intensified secondary response, due to the memory cells formed during the first encounter.			
a)The first infection of chicken pox produces a primary response and antibodies are generated against chicken pox virus, subsequent encounter with the same virus elicit a highly intensified secondary response, due to the memory cells formed during the first encounter.	¹⁄2x3		
antibodies are generated against chicken pox virus, subsequent encounter with the same virus elicit a highly intensified secondary response, due to the memory cells formed during the first encounter.	½x3		l i
This kind of immunity is active immunity.		3	152
	1⁄2		
a) Tetanus is caused by a microbe which has a deadly and fast action. Action of vaccine is slow and which may be fatal.	¹∕₂ x 2		
a) DNA is negatively charged hence move from cathode to anode.	1⁄2	3	198
b) Agarose. obtained from sea weed	¹∕₂x2		
c) Stained with Ethidium bromide, expose to UV rays, Elution	1⁄2X3		
a) The primary effluent is continuously agitated, to allow the growth of aerobic microbes.b) A small amount of activated sluge serves as inoculum for the	½x2		
aeration tank and rest of it is transferred to anaerobic sludge digester for anaerobic respiration.c) The major part of the activated sludge is pumped into large tanks called anaerobic sludge digesters	¹⁄2x2	3	184
and the fungi in the sludge and produce biogas.	¹⁄₂x2		
Section-D			
(a) This representation is of beta globin chain of haemoglobinIn a normal	1⁄2x2		
person the mRNA possesses the codon GAG which codes for glutamic acid.			
(b) In the sufferer, the GAG is replaced by GUG in the mRNA which codes	1/2	4	
for valine, point mutation	1/2X2	4	89
(c) Glutamic acid is replaced by valine during translation, due to which RBC	1+ ¹ / ₂ x2		
would be sickle-shaped. Autosomal, recessive disorder			
OR (c) Both, As it is an autosomal disease both male and females are equally	¹∕2x4		
	 digester for anaerobic respiration. c) The major part of the activated sludge is pumped into large tanks called anaerobic sludge digesters where methanogens grow anaerobically, digest the bacteria and the fungi in the sludge and produce biogas. Section-D (a) This representation is of beta globin chain of haemoglobinIn a normal berson the mRNA possesses the codon GAG which codes for glutamic acid. (b) In the sufferer, the GAG is replaced by GUG in the mRNA which codes for valine, point mutation (c) Glutamic acid is replaced by valine during translation, due to which RBC would be sickle-shaped. Autosomal, recessive disorder DR 	digester for anaerobic respiration.1/2x2c) The major part of the activated sludge is pumped into large tanks called anaerobic sludge digesters where methanogens grow anaerobically, digest the bacteria and the fungi in the sludge and produce biogas.1/2x2Section-D1/2x2Section-D1/2x2Colspan="2">Section-D1/2x2Colspan="2">Section-D1/2x2Section-D1/2x2Colspan="2">Colspan="2">Section-D1/2x2Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"	digester for anaerobic respiration. c) The major part of the activated sludge is pumped into large tanks called anaerobic sludge digesters where methanogens grow anaerobically, digest the bacteria and the fungi in the sludge and produce biogas. Section-D (a) This representation is of beta globin chain of haemoglobinIn a normal person the mRNA possesses the codon GAG which codes for glutamic acid. (b) In the sufferer, the GAG is replaced by GUG in the mRNA which codes for glutamic acid. (c) Glutamic acid is replaced by valine during translation, due to which RBC the sickle-shaped. Autosomal, recessive disorder (c) Both, As it is an autosomal disease both male and females are equally 1/2x4

30.	a) Flowering branch of Datura anaging hally sing gang	1⁄2x2	4	159
50.	a) Flowering branch of <i>Datura</i> species, hallucinogensb) Treatment of insomnia and mental depression.	$\frac{1}{2X2}$ $\frac{1}{2X2}$	4	139
	c) <i>Erythroxylum cocca</i> , Interferes with dopamine secretion	$\frac{1}{2}$ X2		
	Central nervous system, hallucination	$\frac{1}{2}$ X2		
	OR	/272		
	Smack, acetylation of morphine	½x2		
		/		
	Opioids, Depressant/slows down body functions.	¹∕₂x2		
	SECTION -E			
31	a.Only one sperm(that has entered zona pellucida) shall enter in to the	¹∕₂ x 2		
	ovum .Others will be degenerated.	1/2		
	b.Prevents polyspermy	1/2 v 2		
	c.Completes meiosis II, to form egg, second polar body.	¹ / ₂ x 3	5	26
	d.Sperm lysin/Enzymes present in acrosome	1⁄2		
	e.Ampullary region of fallopian tube ,zygote,2n	¹∕₂x3		
	OR			
	a) Bagging- The gynoecium of pistillated flower should be			
	covered by polythene bag before maturation.	¹⁄2x4		
	↓			
	When the ovary matured, the bag is removed.			
	The desired wellow environment the desired environment to action and			
	The desired pollen grains collected are dusted over the stigma		5	31,33
	and re-bagged to avoid contamination with unwanted pollen		5	01,00
	grains.			
	Artificial hybridization/controlled pollination.	1⁄2		
	b)Self-incompatibility			
	This is a genetic mechanism and prevents self-pollen (from the same			
	flower or other flowers of the same plant) from fertilising the ovules by			
	inhibiting, pollen germination or pollen tube growth in the pistil.	1⁄2x2		
	a) In abaseneers on the option and stimus are surgered	1⁄2		
	c)In chasmogamous flower, the anther and stigma are exposed. No. Cleistogamous flower are closed flower, anther and stigma remain	1/ 2		
	inside. So no cross pollination.	½x2		
22		1/ 2		
32	a.B-Beta galactosidase,C- Permease,D-Transacetylase	¹ ⁄ ₂ x 3		
	b.Operator	1⁄2	5	79
	c.Presence of lactose, lactose binds to repressor and inactivates it	1		
	d. i gene is a constitutive gene and always expressed and switch off the operon	1		
	e.Ara operon, His operon			
		1/2 2 ()		
	OR	1⁄2 x 2		

