Exam ID.				
----------	--	--	--	--

DAV PUBLIC SCHOOLS,ODISHA ZONE –I PA-II EXAMINATION, 2021-22

• Check that this question paper contains 7 printed pages.

- Set number given on the right hand side of the question paper should be written on the OMR SHEET by the candidate.
- Check that this question paper contains 50 questions.

Class-XII SUB : MATHEMATICS(041)

Time : 90 Minutes

Maximum Marks: 40

General Instructions:

1. This question paper contains three sections – A, B and C. Each part is compulsory.

- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20.
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking
- 6. All questions carry equal marks.

<u>SECTION – A</u>

(Section A consists of 20 questions of each 1mark weightage. Any 16 questions are to be attempted. The first attempted 16 questions would be evaluated.)

1

Q1. Find the principal value of

$$\cos^{-1}\left(\frac{-1}{2}\right) + \sec^{-1}\left(\frac{-2}{\sqrt{3}}\right)$$

A) $\frac{\pi}{2}$ B) π C) $\frac{3\pi}{2}$ D) 2π

Q2.	Let f be defined on [-5, 5] as $f(x) = \begin{cases} x, \text{ if } x \text{ is rational} \\ -x, \text{ if } x \text{ is irrationl} \end{cases}$ then $f(x)$ is A) continuous at every $x \text{ except } x=0$ B) discontinuous at every $x \text{ except } x=0$ C) continuous everywhere D) discontinuous everywhere.			
Q3.	If $A = [a_{ij}]_{nxn}$ and $a_{ij} = i^2 - j^2$ then A is			
	A) Unit matrixB) Symmetric matrixC) Skew symmetric matrixD) Null matrix	1		
Q4.	Find the values of x and y respectively such that			
	$\begin{bmatrix} x-y & 3\\ 2x-y & 2x+1 \end{bmatrix} = \begin{bmatrix} 5 & 3\\ 12 & 15 \end{bmatrix}$	1		
0	A) 2,7 B) 3,4 C) 7,2 D) 4,3			
Q 5.	If $f(x) = x^3 - 6x^2 + 9x + 3$ be a decreasing function then x lies in A) $(-\infty, -1) \cap (3, \infty)$ B) $(1, 3)$ C) $(3, \infty)$ D) None of these	1		
0 (1		
Q 6.	If A, B, C are square matrices of order 3 such that $ A =3$, $ B =-1$,	1		
	C = 2, then $ 2ABC $ is A) 48 B) -48 C) -12 D) 436	1		
Q7.	Let R be a relation defined on the set Z of all integers such that			
	$xRy \Leftrightarrow x + 2y$ is divisible by 3. Then	1		
	A) R is transitive only.B) R is symmetric only.C) R is an equivalence relationD) R is not an equivalence relation			
Q 8.	If $xy = e - e^y$ then $\frac{dy}{dx}\Big _{x=0} =$	1		
	A) $\frac{1}{e}$ B) $\frac{1}{e^2}$ C) $\frac{-1}{e}$ D) None of these			

Q 9.	The slope of the normal to the curve $x = a \sin t$, $y = a \left(\cos t + \log \tan \frac{t}{2} \right)$	1
	at the point 't' isA) tan tB) - tan tC) cot tC) -cot t	
Q10.	The value of x which satisfies the equation $\tan^{-1} x = \sin^{-1} \left(\frac{3}{\sqrt{10}} \right)$ is	1
	A) $\frac{1}{3}$ B) $\frac{1}{2}$ C) 3 D) None of these	
Q11.	The number of equivalence relations on the set $A = \{1,2,3\}$ containing (1,3) and (3,1) is	1
012	A = 1 $B = 2$ $C = 3$ $D = 5$	
Q12.	The values of x for which $\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$ are	1
Q13.	A) -1,12 B) -3,5 C) -2,-14 D) None of these If A and B are square matrices such that $AB = B$ and $BA = A$ then $A^2 + B^2$ is always equal to	1
Q14.	A) 2ABB) 2BAC) A + BD) ABA curve is represented parametrically by the equations	
	$x = 4t^{3} + 3$, $y = 4 + 3t^{4}$, then $\frac{d^{2}x}{dv^{2}}$ is	1
015	A) $\frac{1}{t}$ B) $\frac{-1}{12t^5}$ C) 1 D) None of these	
Q15.	If $A = \begin{bmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix}$ then $(A(adjA)A^{-1})A$ equals to	1
	A) $2\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ B) $\begin{bmatrix} -6 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & -6 \end{bmatrix}$	
	C) $\frac{1}{6}\begin{bmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix}$ D) None of these	
Q16.	If $y = 4x - 6$ is a tangent to the curve $y^2 = ax^4 + b$ at (3,6),then A) $a = \frac{4}{9}, b = \frac{-4}{9}$ B) $a = 0, b = \frac{4}{9}$ C) $a = \frac{4}{9}, b = 0$ D) None of these	1
Q 17.	If $y = e^{\frac{1}{2}\log(1+\tan^2 x)}$ then $\frac{dy}{dx}$ is equal to A) $\frac{1}{2}\sec^2 x$ B) $\sec^2 x$ C) $\sec x \tan x$ D) $\log(\sec x + \tan x)$	1

PA-II/MATH-XII/SET-3

Page 3 of 7

Q18.	If $\begin{vmatrix} x & \sin\theta & \cos\theta \\ -\sin\theta & -x & 1 \\ \cos\theta & 1 & x \end{vmatrix} = 8$, then value of x is				1
	A) 2 B) -2	C) 4	D)-4		
Q19.	If $f(x) = a \log x + bx^2 + x$	-	,	nd	
-	x=2 then values of a a	and b are			1
	A) a= -1 ,b=2 C) a=0 , b=2	B) a=2, b	=-1		
	C) a=0 , b=2	D) a=2 , 1	$b = \frac{-1}{2}$		
Q 20.	The linear programm	ning problem, To	o minimize $Z = 3$	x + 2y	
	Subject to constraints			⁰ has	
	A) One solution C) Two solutions	· · · · · · · · · · · · · · · · · · ·	feasible region initely many solu	itions	
	c) i wo solutions	SECTION -			
	tion B consists of 20 qu	uestions (21 – 40)	of each 1mark	0 0	•
qı	lestions are to be attem	-		estions would l	be
	If $A = \{1, 2, 3, 4\}$, $B = \{a, b\}$	evaluated. c^{c} then the numl		from A to R	
Q21	which are not surject		our of functions		1
	A) 8	B) 24	C) 45	D) 36	
Q22.	$y = \sqrt{3} \ln x + y$ (nen — is equivition				1
	A) $\frac{\cos x}{2y-1}$	B) $\frac{\cos x}{1-2y}$	C) $\frac{\sin x}{1-2y}$	D) $\frac{\sin x}{2y-1}$	
Q23.	Corner points of the f	•	•	e system of	1
	linear constraints are $(0, 3)$, $(1, 1)$ and $(3, 0)$. Let Z = px+qy, where p, q > 0. Condition on p and q so that the				
	minimum of Z occurs	s at (3, 0) and (1,	1) is		
	(A) p = 2q	(B) $2p = q$	(C) $p = 3q$	(D) p = q	
Q24.	The derivative of cos	$s^{-1}(2x^2-1)$ w.r.t.co	$s^{-1} x$ is		
	(A) 2	(B) $\frac{-1}{2\sqrt{1-x^2}}$		(D) $1 - x^2$	1
Q25.	If $A = \begin{bmatrix} 4 & 3 \\ 5 & -4 \end{bmatrix}$ and A^{-1}	$k^{1} = kA$, then 'k'	is equal to		1
	(A) $\frac{-1}{31}$		(C) 1	(D) None	
Q26.	The function $f(x) = ta$	$\sin^{-1}(\sin x + \cos x)$			
	is an increasing funct				1
	(A) $\left(0,\frac{\pi}{2}\right)$	$(B)\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$	(C) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$	(D) $\left(\frac{-\pi}{2}\frac{\pi}{4}\right)$	

PA-II/MATH-XII/SET-3

Page 4 of 7

Q27.	Express in simplest	form $\tan^{-1}\left(\frac{\cos x}{1+\sin x}\right)$	1	
	A) $\frac{\pi}{4} - \frac{x}{2}$	B) $\frac{\pi}{4} + \frac{x}{2}$ C) $\frac{x}{2}$ D) $\frac{\pi}{4} - x$		
Q28.	If matrix $A = \begin{bmatrix} 0 & 2b \\ 3 & 1 \\ 3a & 3 \end{bmatrix}$	$\begin{bmatrix} -2 \\ 3 \\ -1 \end{bmatrix}$ is a symmetric matrix, then the values of	1	
	a and b are			
		B) $a = \frac{2}{3}, b = \frac{-3}{2}$		
0.20	C) a=2 , b= -3	D) none of these $3^3 + 2^2 + 2^2 = 27$		
Q29.		the curve $y = -x^3 + 3x^2 + 9x - 27$ is	1	
	A) 0	B) 12 C)10 D)32	L	
Q30.	The relation R in the $R = \{(x, y) : y = x + 7 \text{ and } \}$	e set of natural numbers N defined as 1×5^{1} .	1	
	A) Reflexive	B) Symmetric	I	
	C) Transitive	D) Equivalence relation		
	,			
Q 31.	The value of λ for w	which the matrix $A = \begin{bmatrix} 1 & 3 & \lambda + 2 \\ 2 & 4 & 8 \\ 3 & 5 & 10 \end{bmatrix}$ is singular is $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	1	
	A) 3	B) 5 C) -4 D) 4		
Q32.	If $f(x) = \begin{cases} \frac{\tan 5x}{x^2 + 2x}, & x \neq 0\\ k + \frac{1}{2}, & x = 0 \end{cases}$	⁰ is continuous at x=0, then the value of k is B) -2 (C) 3 (D)2	1	
	A) 1	B) -2 C) 3 D)2		
Q 33.	The profit function P which yields the values 61 and 57			
	at (4, 7) and (5,6) res		1	
~ • •	A) $2x + 5y$	B) $7x + 3y$ C) $5x + 2y$ D) $3x + 7y$		
Q34.	The point of the parabola $y^2 = 64x$ which is nearest to the line $4x + 3y + 35 = 0$ is			
	4x + 3y + 35 = 0 is A) (9,-24)	B) (1,81) C) (4,16) D) (-9,-24)	L	
Q 35.	Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ and f	$f(x) = x^{2} + x = 1$ (1) $f(A) = -1$	1	
	$\mathbf{A})\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^{\top}$	$B) \begin{bmatrix} 0 & 3 \\ 3 & 6 \end{bmatrix}$		
	C) $A = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$	D) $A = \begin{bmatrix} 3 & 0 \\ 3 & 6 \end{bmatrix}$		
Q36.	The domain of the fu	function $f(x) = \sin^{-1} \sqrt{x-1}$ is		
	A) [1,2]	B) $[-2,1]$ C) $[-1,1]$ D) $[0,1]$	1	
Þ	U/MATH-XII/SET-3	Page 5 of 7		

PA-II/MATH-XII/SET-3

Page 5 of 7

O 37. The greatest integer function $f: R \to R$ given by f(x) = [x] is 1 B) surjective C) bijective D) None of these A) injective The total number of matrices of order 2x3 whose each entry is 0 or Q 38. 1 2 is C) 64 B) 36 D) 32 A) 12 If the curve $ay + x^2 = 7$ and $x^3 = y$ cut orthogonally at (1,1) then the Q39. 1 value of 'a'is C) -6 B) 0 D) 6 A) 1 If $P = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ is the adjoint of a square matrix **B** of order 3 and Q 40. 1 |B| = 4 then α is equal to B) 6 C) 9 A) 4 D) 11 **SECTION – C**

(Section C consists of 10 questions of each 1mark weightage. Any 08 questions are to be attempted. Questions 46 - 50 are based on a Case- Study. The first attempted 08 questions would be evaluated.)

Q41. If A is a square matrix such that A²=I and (A+I)³+(A-I)³=kA+mI where I will be the identity matrix then the 1 values of k ,m are

Q42. The absolute maximum value of the function f given by $f(x) = 12x^{\frac{4}{3}} - 6x^{\frac{1}{3}}, x \in [-1,1]$ is A) 18 B) 16 C) 14 D) $\frac{1}{8}$

Q 43 The tangent to the curve $y = e^{2x}$ at the point (0,1) meets X-axis at A) (0,1) B)(-0.5,0) C) (2,0) D) (0,2)

- Q44. In a linear programming problem, the constraints in the decision variable x and y are $x + y \le 6, x + 3y \ge 9, x \ge 0, y \ge 0$. Corner points of 1 feasible regions are
 - A) (0,3),(0,0),(6,0)B) $\left(\frac{9}{2},\frac{3}{2}\right),(9,0),(6,0)$ C) $\left(\frac{9}{2},\frac{3}{2}\right),(0,3),(0,6)$ D) None of these

- Q45. Corner points of the feasible region for a LPP are (3,0), (0,2), (6,0)(6,8)and (0,5). Let E = 4x + 6y be the objective function. The minimum 1 value of E occurs at
 - A) $(0,2)_{only.}$ B) $(3,0)_{only.}$
 - C) the mid point of the line segment joining the points (0,2) and (3,0) only.
 - D) any point on the line segment joining the points (0,2) and (3,0)

CASE STUDY

A western music concert is organised every year in the stadium that can hold 36,000 spectators with a ticket price of RS. 10, the average attendance has been 24,000. Some financial expert estimated that price of the ticket should be determined by the function $p(x) = 15 - \frac{x}{3000}$ where 'x' is the number of tickets sold.

Based on the above information, answer the following questions Q46. The revenue *R* as a function of *x* can be represented as

					-
	A) $15 - \frac{x^2}{3000}$		B) 15 <i>x</i> -	$-\frac{x^2}{3000}$	
	C) $15x - \frac{1}{30000}$		D) 15 <i>x</i> –	$\frac{x}{3000}$	
Q 47.	The range of x is				
-	A) [24000,36000]		B)[0,2400	00]	1
	C) [0,36000]		D)None	of these	
Q48. The number of spectators to be present to maximise the revenu			aximise the revenue is		
	A) 22500	B) 21000	C)20000	D) 25000	1
O 49.	When revenue is ma	ximum . the	price of the	ticket in Rupees is	
	A) 5		C) 7	_	1

Q50. The maximum revenue in Rupees is A) 215000 B) 156500 C) 168750 D) 225000 1

1