DAV PUBLIC SCHOOLS, ODISHA ZONE

PERIODIC ASSESSMENT –II(2023-24) SUBJECT – SCIENCE(086) CLASS - IX MARKING SCHEME

Q No.	Value Points	Marks Alloted	Total mark	Page No. of NCERT TEXT Book
1.	(c) 625 m	1	1	110
2.	(a) Zero	1	1	101
3.	(b)	1	1	121
4.	(b) m	1	1	NCERT EXEMPLAR
5.	(d) all the above	1	1	122
б.	(c) Liquid C	1	1	141
7.	(b) 351 K	1	1	6
8.	(c) (i), (iii) and (iv)	1	1	NCERT EXEMPLAR
9.	(a) They are homogeneous mixtures and classified as metallic alloys.	1	1	15
10.	(c) corrosion and it is a chemical change	1	1	24
11.	(c) Atoms of a given element are not identical in mass and chemical properties.	1	1	32
12.	(d) 32g	1	1	31
13.	(a) raisins in beaker A were more swollen than those in beaker B	1	1	60
14.	(b) Sclerenchyma	1	1	71
15.	(c) X- Epidermal cell Y- Guard cell	1	1	71
16.	(c) remain at the same position	1	1	NCERT EXEMPLAR
17.	(c) Assertion is true but the Reason is false.	1	1	120
18.	(c) Assertion is true but the Reason is false.	1	1	7
19.	(a) Both the Assertion and the Reason are correct and the Reason is the correct explanation of the Assertion.	1	1	18
20.	(c) Assertion is true but the Reason is false.	1	1	59
21.	 (a) The rider tends to fall forward due to inertia of motion of upper part of his body. (b) It is difficult to hold hose ejecting large amount of water because of its tendency to move backward due to equal reaction force applied by stream of water on the hose. 	1 1	2	118,122
22.	3g of Hydrogen react completely with 14g of Nitrogen. 9g of Hydrogen react completely with $\frac{14}{3} \times 9 = 42g$ of Nitrogen. Law of constant proportion which states in a chemical substance the elements are always present in definite proportions by mass.	1	2	32

r	P			
23.	(a) Lysosome destroys the foreign materials that enters into the cell	1		
	by its hydrolytic enzymes.		2	64
	(b) SER plays a crucial role in detoxifying many poisons and drugs.	1		
24.	X – Dilute hydrochloric acid.	1		
21.	The egg shrinks/exosmosis	1	2	60
	The egg shi liks/exositions	1		
25.	(a) Part-A – cell wall	1/2		
	Part-B- vacuole	1/2		
	(b) Function of part-A:- To withstand very dilute (hypotonic)	1/2		
	external media without bursting.	/2		
	Function of part-B:-	1/2		
	-	72		
	-Provide turgidity and rigidity to the cell.			
	-Storage of amino acids, sugars, organic acids, proteins etc.		2	60,61,65
	(Any one)		_	00,01,00
	OR	OR		
	(a) Endocytosis	1/2		
	The flexibility of the cell membrane enables the cell to engulf in	1		
	food and other material from its external environment. This process			
	is called Endocytosis.			
	(b)because of rigid cell wall	1/2		
26.	\mathbf{A} – Epidermis; \mathbf{B} – Stomatal pore	$\frac{1}{2} + \frac{1}{2}$		
20.				
	Massive amounts of gaseous exchange takes place in the leaves	1		
	through these pores for the purpose of photosynthesis.			
	Transpiration. (Any One).		2	71
	OR	OR		
	Chlorenchyma-helps in photosynthesis	1		
	Aerenchyma-buoyancy to aquatic plants	1		
27.	(a) $m = 10 g = 1/100 kg$, $u = 10^3 m / s$, $v = 0$, $s = 5/100 m$	1/2		
	$v^2 - u^2 = 2as$			
	$0 - (10^3)^2 - 2 = 5/100$			
	$0 - (10^3)^2 = 2.a.5/100$ $a = -10^7 \text{ ms}^{-2}$	1		
	$F = m. a = -10^5 N$	1 1/2		
		72		
	(b) $v = u + at$			
	$0 = 10^3 - 10^7 t$			
	$10^7 t = 10^3$	1		NCERT
	$t = 10^3 / 10^7 = 10^{-4} s$			EXEMPLAR
	OR			
	Given, mass of the bullet $(m) = 10g$ (or 0.01 kg)	OR		
	(u) = 150 m/s $(v) = 0 m/s$			
	Time period (t) = 0.03 s	1/2	~	
	v = u + at	· -	3	
	0 = 150 + a (0.03)	1/2		129
	$a = -5000 \text{ ms}^{-2}$	12		141
	$v^2 = u^2 + 2as$	1		
		1		
	$0 = 150^2 + 2 \text{ x } (-5000)\text{s}$			
	s = 2.25 m			
	As per the second law of motion, $F = ma$			
	$F = 0.01 \text{kg} \times (-5000 \text{ ms}^{-2})$			
1	F = -50 N	1		

28.	(a) when an object is partially			1		
	it experiences an upthrust or u					
	to the weight of the fluid displaced by it.					141,142
	(b) Hydrometer is used to find			$\frac{1}{2} + \frac{1}{2}$		1+1,1+2
	Lactometer is used to measure the purity of a given				3	NCERT
	sample of milk.(any two relev					Exemplar
	· · · · · · · · ·	isplaced by the object is equal to	o the	1		Exemplai
	apparent loss of weight of the solid $= 2N$					
29.	(a) (a) Given that $W_e = mg_e = 39$	92 N				
	$W_p = mg_p$					
	$W_{p}/W_{e} = g_{p}/g_{e}(1)$ We know $g_{e}=GM_{e}/R_{e}^{2}$					
	We know $g_e = GM_e/R_e^2$					
	According to question					
	$g_p = (G \ x2M_e)/(4R_e)^2 = GM_e/81$	$R_{e}^{2} = 1/8(GM_{e}/R_{e}^{2})$		1		
	But $g_p = 1/8 g_e$ (2)					
	Using equation (2) in equation	. (1)				137,139
	We get, $W_p/W_e = 1/8$					
	Or $W_p = W_e/8 = 392N/8 = 49 N$			1	3	
					5	
	(b) pressure $=\frac{thrust}{area}$			1⁄2		
	SI unit = pascal					
	bi unit – puscui			1⁄2		
20						
30.	(a)			2		
	Evaporation	Boiling		2		
	Evaporation usually occurs	Boiling usually occurs from				
	on the surface of the liquid.	the bulk of the medium.				
	The process of evaporation	The process of boiling is				
	is usually slower.	usually much quicker.				
	Evaporation cause cooling.	Boiling don't cause cooling				
		effect.				
	Evaporation occurs at any	Boiling occurs at a fixed				
	temperature below the	temperature				
	boiling point					
	(Any two)					
	· · ·	the heat ,our body starts sweat	-	1		
		evaporation and gets cooling e	ffect.	-		7,9
	But the air cannot hold any mo	•				
	therefore the sweat or perspira	uon is seen.			3	
		OR			5	
		OK		OR		
	(a)During the change of state the heat supplied is used to overcome		come			
	 (a) During the change of state the near supplied is used to overcome the intermolecular force of attraction hence the temperature remains constant. (b) Ice at 273K will have more cooling effect than water because ice has extra energy in the form of latent heat of fusion. When ice melts, it takes extra energy from the surroundings to overcome this latent heat. The temperature of the surrounding gets lowered or cooling is caused. Since water is in liquid state it will hardly take up energy from the surroundings. 					
				1		
				2		

31.	(a) milk, coloured gemstone-colloid			
51.	tincture of iodine-true solution	1⁄2 X 4		
	soil in water-suspension	72 A 4		16,18
	-	$\frac{1}{2} + \frac{1}{2}$	3	10,18
	(b)Dispersed phase- liquid Dispersing medium- gas	72 + 72		
20	1 0 0			
32.	(a) Two Similarities:	1		
	i. Both are found in eukaryotic cells.	1		
	ii. They have their own DNA and ribosomes.		3	65
	(Any other relevant answer).			
	(b) Viruses lack any membranes and hence do not show	1		
	characteristics of life until they enter a living body.			
33.	A. Apical Meristem–Increases the length of the stem and the root.	1		
	B. Intercalary Meristem–Facilitate longitudinal growth of plant organ.	1	3	69
	Increases the length of the internode.	1		
34.	C. Lateral Meristem – increases the girth of the stem or root.	1		
54.	(a) $F = Gm_1m_2/r^2 = 200 \text{ N} - \dots - (1)$	1		
	$F_1 = Gm_1m_2/(r_1)^2 = 100N$ (2)			
	Dividing eq(1) by eq(2), We get $(r)^{2}/r^{2} = 200/100 = 2$			
	We get $(r_1)^2/r^2 = 200/100 = 2$			
	Or $r_1 = \sqrt{2} r$			
	(b) According to Newton's second law of motion, for a given force,	2		
	acceleration is inversely proportional to mass of an object. Hence acceleration produced in case of the earth is negligible as mass is			
	much more in comparison to the mass of the apple. So we do not see the			
	earth moving towards the apple.			
	(c) Given data:			
	Initial velocity, $u = 40m/s$			
	$g = 10 \text{ m/s}^2$			
	Max height final velocity $= 0$			
	Consider third equation of motion			132,135,136
	$v^2 = u^2 - 2gh$ [negative as the object goes up]			
	$0 = (40)^2 - 2 \times 10 \times h$			
	$h = (40 \times 40) / 20$			
	Maximum height $h = 80m$	1		
	Total Distance = $h + h = 80m + 80m = 160m$		5	
	Total displacement = 0 as the final position of the stone coincides	1⁄2	-	
	OR	1⁄2		
	(a) i) $t = 8s/2 = 4s$	OR		
	(a) 1) $t = -85/2 = -48$ v =0; a = -g = -9.8m/s ²			
				136,134
	v = u + at, $0 = u - 9.8 \times 4$			
	$0 = u - 9.8 \times 4$ u = 39.2 m/s			
	u = 39.2 m/s (ii) $v^2 - u^2 = 2ah$,	1		
	(ii) $\sqrt{-u} = 2an$, or $0 - (39.2)^2 = 2 \times (-9.8) \times h$			
	h = 78.4 m	1		
	(iii) at $t = 4s$, the ball is at maximum height.			
	5s - 4s = 1s			
	In the next 1s; $h = 0 + \frac{1}{2} \times 9.8 \times (1)^2 = 4.9 \text{ m}$	1		
	(from the top) or 73.5 m from the bottom.			
	(b) Importance			
	1. The force that binds us to the earth.	1		
	2. The motion of the moon around the earth.	1		
	(or any relevant point)			

			-	[I
35.	a) Let the amount of Ammoniu		2		
	Amount of solution = (x)	x + 120) g			
	$\% = \frac{x}{x+120} \times 100$				
	$\% = \frac{x}{x+120} \ge 100$ $\Rightarrow 15 = \frac{x}{x+120} \ge 100$				
	$\Rightarrow x = 21.17g$				
	(b)(i) Solid potassium chloride	will separate out	1		
	(ii) Iron sulphide will be formed	-	1		
	1	u. It 0°C because it is not pure water. At	1		
		water is 100°C and the freezing	1/2+1/2		
	point of pure water is 0°C.	water is 100°C and the neezing			16,17,18,25
	point of pare water is o C.	OR	OR		10,17,10,23
	(a) At 323 K, salt Y has the hig	hest solubility in water while salt Z	1 1		NCERT
	has the lowest solubility.		1		EXEMPLAR
	(b) By definition of saturated so	olution.	2	5	
	100 g of water at 323 K contair		2	5	
		a salt = (40g/100g) x (125 g) = 50 g			
		ake the solution again saturated = $\frac{1}{2}$			
	(50 - 40) = 10 g	C			
		ed to make a saturated solution in			
	200 g of water = (25g/100g) x		1		
	(d) A solution which temporari	ly contains more solute than the			
	saturation level at a particular to	emperature is called a super saturated	1		
	solution.				
36.	(a) X- Mitosis		1/2		
	Y -Meiosis		1⁄2		
	(b) Meiosis, Chromosomes nur		$\frac{1}{2} + \frac{1}{2}$		
		s kept in concentrated saline solution,	1		
	it loses water due to exosmosis and shrinks.(ii) If plasma membrane of a cell breaks down, all the protoplasmic materials including cell organelles will come out of the cell resulting in their non-functioning and hence death of the cell.				
					66
				5	
		0	1		
		aves will get killed on boiling; hence herefore, there will be no effect of	1		
	putting sugar syrup over the lea				
	putting sugar syrup over the lea	ives.			
37.	(a)				
57.	Uniform linear motion	Uniform circular motion			
	1.Motion is along a straight	Motion is along a circular			
	path	path			
	2.Direction does not	Direction changes	1		
	change.	continuously			
	3.There is no accelerated .	It is an accelerated motion.			NORDY
	(any one difference)				NCERT
	(b) 1:1				PAGE 101,110
	(c) $a = -6m/s^2$, $t = 2s$, $v =$	0 m/s		4	101,110
	v = u + at		1		
	$0 = u + (-6 \ge 2)$				
	u = 12m/s.		_		
	$s = ut + \frac{1}{2} at^2$		1		
	s = 24 - 12 = 12 m		1		
			1		

	OR	OR		
	(c)Let distance of school be x km.			
	$t_1 = \frac{x}{30}h \text{ and } t_2 = \frac{x}{25}h$	1		
	Total time = $t_1 + t_2 = \frac{x}{30} + \frac{x}{25} = \frac{11x}{150}$	1		
	Av speed for round trip = $\frac{25 150}{total \ distance} = \frac{2x}{11x/150}$			
	$=\frac{300}{11}=27.27$ km/h			
38.	a) Water hyacinth floats in water due to presence of large air			
	cavities in the parenchyma tissue. These specialized parenchyma	1		
	tissues are called aerenchyma.			
	b) Husk of coconut tree is sclerenchyma which is hard. Hence it is			
	difficult to pull out the husk of a coconut tree.	1		
	c) Collenchyma			
	Provides flexibility in plants.	1 + 1		71
	Also provides mechanical support.(Any one)		4	
	OR	OD		
	(c) Cells of meristematic tissue are very active, they have dense	OR		
	cytoplasm, thin cellulose walls and prominent nuclei. They lack vacuoles.	1 + 1		
	(Any two)	1 + 1		
39.	(a) beaker D			
57.	(b) slower in A than in C			
	(c) The rate of diffusion increases with the increase in temperature	1		
	as with increase in temperature kinetic energy increases ad particles	1		
	diffuse rapidly	2		
	OR	07	4	2,3
	(c)	OR		
	i) Solid < liquid < gas	1		
	ii) Inter particle space, kinetic energy, intermolecular space	1		
	(any two)			
