Exam ID.

Candidates must write the Set No. on the title page of the OMR Sheet.

DAV PUBLIC SCHOOLS, ODISHA ZONE –I PA-II EXAMINATION, 2021-22

- Check that this question paper contains 07 printed pages.
- Set number given on the right-hand side of the question paper should be written on the OMR SHEET by the candidate.
- Check that this question paper contains 50 questions.

CLASS – XI SUB : MATHEMATICS (041)

Time :90 Minutes

Maximum Marks: 40

General Instruction:

- 1. This question Paper contains three sections-A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20.
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking.
- 6. All questions carry equal marks.

SECTION – A

(Section A consists of 20 questions of each 1mark weightage. Any 16 questions are to be attempted. The first attempted 16 questions would be evaluated.)

Q1.	Let $A = \{5,6\}$ and $B = \{7,6\}$, the number of relation from A to B is		1
	A. 4	B. 16	
	C. 32	D. 64	1
Q2.	If $(x+3,5) = (6,2x+y)$, then the value of x and y is		
	A. 3,1	B. 3,-1	
	C3,1	D3,-1	
Q3.	The variance of the first 5 natural		1
	A. 1	B. 2	
04	C. 3 $f(x) = 2x^2$	D. 4	1
Q4.	The range of $f(x) = 2 - (x - 3)^2$ is		1
	A. $(-\infty, 2]$	B. $[2, \infty)$	
05	C. $(2, \infty)$	D. $(-2, \infty)$	1
Q5.	If $f(x) = x^3 - \frac{1}{x^3}$, then the value of	$f(x) + f\left(\frac{1}{x}\right)$ is	1
	A. 0	B. $2 x^{3}$	
	C. 3 x ³	D. $2/x^2$	
Q6.	Let A,B are two sets. If $A \cap X = B$	$\cap \mathbf{X} = \emptyset$ and $\mathbf{A} \cup \mathbf{X} = \mathbf{B} \cup \mathbf{X}$, for some set	1
	X, then		
	A. $A = B$	B. A \neq B	
	C. A \cap B=Ø	D. A – B $\neq \emptyset$	
Q7.	The relation f defined by $f(x) = \begin{cases} x^2 \\ 3x \end{cases}$	$0 \le x \le 2$ is	1
	A. a function	$2 \le X \le 10$ B. both relation and function	
	C. not a function	D. not a relation	
Q8.			1
200	Let $f = \{(1,1), (2,3), (0,-1), (-1,-3)\}$ be a function from Z to Z defined by $f(x) = 1$ ax + b, for some integers a and b, then value of a and b are		1
	A. 1,0	B1,0	
	C1,2	D. 2,-1	
Q9.	The value of i^{4n-3} , $n \in \mathbb{Z}$ is		1
	Ai	B. I	
	C. 1	D1	
Q10.	If $z = 2 + \sqrt{3}i$ then the value of th	e multiplicative inverse of z is	1
	A. $\frac{2-\sqrt{3}i}{7}$	B. $\frac{2+\sqrt{3}i}{7}$	
	C. 1	D. $\sqrt{7}$	
Q11.	The value of $i^{143} + i^{144} + i^{145} + i$		1
	A. 0	B. 1	
	C1	D. i	

Q12.	If x - i y = $\frac{a+ib}{a-ib}$, then the value of x ²	$^{2} + y^{2}$	1
	A. 1	B1	
	C. 0	D. $a^2 + b^2$	
Q13.	If α , β are different complex numbers	with $ \beta = 1$, then the value of $\left \frac{\beta-\alpha}{1-\overline{\alpha}\beta}\right $ is	1
	A. 1	B. 0	
	C. $\alpha^2 + \beta^2$	D. $\alpha^2 - \beta^2$	
Q14.	The value of $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$ is		1
	A. 3/5	B. 5/3	
	C. 1	D. Not defined	
Q15.	$(\mathbf{a} + \mathbf{b}\mathbf{x} \cdot \mathbf{x} < \mathbf{a})$	1	1
	For the function $f(x) = \begin{cases} 4 & x = \end{cases}$	1 1,and if $\lim_{x\to 1} f(x) = f(1)$ The values of 1	
		1	
	a and b are	D 40	
	A. 0,4	B. 4,0	
01(C. $1,-2$	D1,-2	1
Q16.	If $f(x) = \begin{cases} \frac{ x }{x} & x \neq 0\\ 0 & x = 0 \end{cases}$ then $\lim_{x \to 0} f(x)$ is	S	1
	A. Exist $\mathbf{X} = \mathbf{U}$	B. does not exist	
	C. 1	D1	
Q17.	The distance of the point (-2,-3) from		1
C	A. $\frac{17}{5}$	B. $\frac{-17}{\sqrt{13}}$	
	5	120	
	C. $\frac{12}{5}$	D. 5	
Q18.	If $\lim_{x\to 0} \frac{5}{\sqrt{x+1}-1}$ exist, then the value	of the limit is	1
	A. 2	B. log _e 2	
	C2	Dlog _e 2	
Q19.	The distance between the lines 3x+4	y+5=0 and 6x+8y+10=0 is	1
	A. $\frac{7}{7}$	B. 1	
	A. $\frac{7}{5}$ C. $\frac{12}{5}$	D. 0	
Q20.	In a GP the tenth term is 9, the four	rth term is 4 and 1 st term is $\frac{8}{3}$, then the	1
	7 th term is	5	
	A. 6	B6	
	~ .		

C. 9 D. -9

SECTION – B

(Section B consists of 20 questions (21 - 40) of each 1mark weightage. Any 16 questions are to be attempted. The first attempted 16 questions would be evaluated.)

Q21	If $7^{\frac{1}{2}}$, $7^{\frac{1}{4}}$, $7^{\frac{1}{8}}$, (to ∞) = $(\sqrt{7})^{x}$, then t	he value of x is	1
	A. $\frac{1}{2}$	B. 4	
	C. 2	D. 0	
Q22.	If pth , qth and rth terms of a GP area		1
C	value of $\mathbf{a}^{q-r} \times \mathbf{b}^{r-p} \times \mathbf{c}^{p-q}$ is	,	
	A. 1	B. 0	
	C1	D. a	
Q23.	If $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the G.M between a	a and b. then the value of n is	1
	A. 1	B1	
	C. $\frac{1}{2}$	D. $\frac{-1}{2}$	
Q24.	If the sum of n terms of an AP is nP –	Z	1
	constants, then the common difference		
	A. P-Q	B. Q	
	C. P	D. P+Q	
Q25.	The range of signum function is		1
	A. {-1,0,1}	B. {1,-1}	
	C. Z,{-1,0,1}	D. Z,{-1,1}	
Q26.	Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2 + 3$		1
	A. {-1,1}	B. {+1,-1,0}	
	C. {1}	D. Does not exist	
Q27.	In a school there are 20 teachers who	-	I
	these 8 teach only mathematics and 4 teach both physics and		
	mathematics. Then teacher teaches p A. 16	B. 8	
	C. 4	D12	
Q28.	If $z = \frac{1+2i}{1-i}$, then z lies in the	D. 12	1
	A. I quadrant	B. II quadrant	
	C. III quadrant	D. IV quadrant	
Q29.	The solution of $x^2 + \frac{x}{\sqrt{2}} + 1 = 0$ are		1
	A. $\frac{-1\pm\sqrt{7}i}{2\sqrt{2}}$	$B \frac{-1+\sqrt{7}i}{2}$	
	$2\sqrt{2}$	B. $\frac{-1+\sqrt{7}i}{2\sqrt{2}}$ D. $\frac{-1\pm\sqrt{3}i}{2\sqrt{2}}$	
	C. $\frac{-1\pm\sqrt{7}i}{\sqrt{2}}$	D. $\frac{-1\pm\sqrt{31}}{2\sqrt{2}}$	
	v 2		

Q30.	The value of $\sum_{k=1}^{11} (2 + 3^k)$ is		1
Q30.	A. $22 + \frac{3}{2}(3^{11} - 1)$	B. $22 + \frac{3}{2}(3^{11} + 1)$	1
	A. $22 + \frac{2}{2}(3 - 1)$	B. $22 + \frac{2}{2}(3 + 1)$	
	C. $22 + \frac{5}{2}(3^{11} - 1)$	D. $44 + \frac{3}{2}(3^{11} - 1)$	
Q31.	If a,b and c are in G.P and $a_{x}^{1} = 1$	$\frac{1}{y} = \frac{1}{z}$ then x y z are in	1
	A. A.P	B. G.P	
	C. Both A.P and G.P	D. Neither A.P nor G.P	
Q32.	If A and G be respectively A.M a	nd G.M between two positive	1
	numbers. Then numbers are	_	
	A. $A \pm \sqrt{A^2 + G^2}$	B. $A \pm \sqrt{A^2 - G^2}$	
	C. $-A \pm \sqrt{A^2 + G^2}$	D. $-A - \sqrt{A^2 + G^2}$	
Q33.	The line passing through the poin	nt (x ₁ ,y ₁) and parallel to ax+by+c=0 is	1
	A. $a(x-x_{1})+b(y-y_{1})=0$	B. $a(x-x_{1})-b(y-y_{1})=0$	
	C. $-a(x-x_1)+b(y-y_1)=0$	D. $-a(x-x_1)-b(y-y_1)=0$	
Q34.	If N=10, $\sum x=60$ and $\sum x^2=1000$ t	hen standard deviation is	1
	A8	B. 8	
	C. ±8	D. 0	
Q35.		s 4. If each observation is multiplied	1
	by 3, then the variance of the new		
	A. 36	B36	
036	C. 6	D. 19	1
Q36.	The value of $\lim_{x\to 0} \frac{e^{5x}-e^x}{x}$ is		1
	A. 4	B3	
	C. 2	D. 0	
Q37			1
	axis is		
	A. 1:2	B. 2:1	
0.30	C1:2	D. 1:-2	1
Q38.	The mean of first n natural num	B. n	1
	A. $\frac{n+1}{2}$		
	C. $\frac{n(n+1)}{2}$	D. n	
Q39.	2	s through the origin and the midpoint	1
C	of the segment joining the points		
	A. 2	B. $-\frac{1}{2}$	
	C2	D4 ²	
040	The verience of 20 observations i	s 6.5. If each observation is increased	1

Q40. The variance of 20 observations is 6.5. If each observation is increased 1 by 4, then the new variance is

A. 10.5		B. 2.5
C. 6.5		D. 2.6
	CE CELON	a

SECTION – C

(Section C consists of 10 questions of each 1mark weightage. Any 08 questions are to be attempted. Questions 46 - 50 are based on a Case- Study. The first attempted 08 questions would be evaluated.)

Q41.	The mean of the 10 observations is 18. If each observation is increased by 2, then the new mean is		
	A. 20	B. 38	
	C. 16	D. 12	
Q42.	The mean of the 7 observations is 25. I	f 3 is subtracted from each	1
	observation, then the new mean is		
	A. 21	B. 22	
	C. 23	D. 28	
Q43.	The set builder form of {1,-1.i,-i} is		1
	A. $x^4 - 1 = 0$	B. $x^2 - 1 = 0$	
	C. $x^2 + i = 0$	D. $x^2 - i = 0$	
Q44.	The value of $\lim_{x\to 0} \frac{\sqrt{x+1}-1}{\log(1+x)}$ is		1
	A. 2	B. 4	
	C. $\frac{1}{2}$	D. $-\frac{1}{2}$	
Q45.	The domain of the function $f(x) = \sqrt{9}$	$\overline{\mathbf{x}^2}$ is	1
	A. R B	. [0,3]	
	C. [-3,3] D	. (-3,3)	
Questions 46-50 are based on a Case-Study.			
Consider the following population and year graph.			
	Y 102 Jobnlation in Crores 4 (1985, 92) 87	B (1995, 97)	
	O 1985 1990	1995 2000 2005 2010 Vears	•

Based on the above information answer the following

PA-II/MATHS-XI/SET-3

Q46.	The slope of the line AB is		1
-	A. 2	B. 2	
	C. $\frac{1}{3}$	D. $\frac{1}{2}$	
Q47.	The equation of line AB is		1
	A. x+2y=1791	B. x-2y=1801	
	C. x-2y=1791	D. x-2y+1801=0	
Q48.	The population in the year 2010 is (in crores)		1
•	A. 104.5	B. 119.5	
	C. 109.5	D. None	
Q49.	The equation of line perpendicular to line AB and passing through (1995, 97) is		1
	A. $2x-y=4087$	B. 2x+y=4087	
	C. $2x+y=1801$	D. None	
Q50.	In which year the population becomes 110 crores.		1
-	A. 2020	B. 2021	
	C. 2022	D. 2019	

************* ALL THE BEST *************