		ANNEXURE -C	
	DAV PUBLIC SCHOOLS, ODISHA	AZONE	
	HY : 2023-24		
	CLASS : XII , SUBJECT : CHEM		
	MARKING SCHEME(SET-1	-	
QS TN N O	Value Points	Marks Allotte d	PAGE NO. OF NCER T /TEXT BOOK
1	b) $H_2O + C_4H_9OH$	1	45
2	(a) $\begin{bmatrix} R \end{bmatrix} \xrightarrow{t \to t}$	1	84
3	c) lesser energy difference between 5f and 6d orbitals than	1	04
5	between 4f and 5d orbitals	1	311
4	a) But-3-en-2-ol	1	289
5	a) $0.005 \text{ mol} \text{L}^{-1} \text{s}^{-1}$		207
6	c) Nearly same atomic size	1	213
7	c) becomes one-fourth	1	100
8	c) 8,000 cm ⁻¹	1	252
9	c) 3	1	226
10	a) or d)1-Methylcyclohexene	1	206
11	a) $Cr > Mn > V > Ti$	1	221
12	c) phenol and acetone	1	332
13	b) Both A and R are true but R is not the correct explanation of A	A. 1	46
14	a) Both A and R are true and R is the correct explanation of A.	1	210
15	b) Both A and R are true but R is not the correct explanation of A	A. 1	101
16	b) Both A and R are true but R is not the correct explanation of A		295
17	For hydrogen electrode, $H^+ + e^- \rightarrow \frac{1}{2}H_2$,	1/2	70
	Applying Nernst equation,		
	$E_{H^+,\frac{1}{2}H_2} = E_{H^+,\frac{1}{2}H_2}^{\circ} - \frac{0.0591}{n} \log \frac{1}{[H^+]}$	1⁄2	
	$= 0 - \frac{0.0591}{1} \log \frac{1}{10^{-10}}$	1⁄2	
	$ \begin{cases} \mathbf{pH} = 10 \\ \Rightarrow [\mathbf{H}^+] = 10^{-10} \mathbf{M} \end{cases} $		
	$= -0.0591 \times 10$ = -0.591 V	1/2	

HY/CHEM-XII(MS)/SET-1

18	a) $6 \operatorname{Fe}^{2+} + \operatorname{Cr}_2 \operatorname{Or}^{2-} + 14 \operatorname{H}^+$ b) $2 \operatorname{Mp} \operatorname{Or}^- + 5 \operatorname{Cr}_2 \operatorname{Or}^{2-} + 16 \operatorname{H}^+ -$)	1	226
19	b) $2MnO_4^-+5C_2O_4^{2-}+16H^+\rightarrow 2Mn^{2+}+10CO_2+8H_2O$ A= CH ₃ CH ₂ OH, B= CH ₃ CH ₂ F, C= CH ₃ CH ₃ , D= CH ₂ =CH ₂		$\frac{1}{1/2} \ge 4$	299- 310	
20	a)			¹ / ₂ + ¹ / ₂	341
	compounds	Tests/reagents	observation		
	phenol	Neutral FeCl ₃ solution	Violet colour solution		
	ethanol		No such obs.		
	b)				
	compounds	Tests/reagents	observation		
	tert-butyl alcohol	Lucas test	Turbidity occurs	1/2 +1/2	338
	tert butyr diconor	(conc.HCl+anh.ZnCl ₂)	immediately.		
			·		
	n- butyl alcohol		No such obs.		.
21	-		high because they have a large	1	218
	number of unpaired electro	ons resulting strong inter ato	mic metallic bonding.		
	b) Weak inter atomic metal	6 6	e	1	
	e, it can inter atomic metal	OR	st superior ofood off.		
	\rightarrow T C · · · · P ²⁺				
	a) In Comparison to Fe ⁻¹ , C	$2r^{-1}$ is a stronger reducing	agent because in formation of	1	
	Cr ³⁺ from Cr ²⁺ changes	is from $d^4 \rightarrow d^3$. In d^3 elect	tronic configuration t_{2g} orbitals	1	
	 a) In Comparison to Fe²⁺, Cr²⁺ is a stronger reducing agent because in formation of Cr³⁺ from Cr²⁺ changes is from d⁴→d³. In d³ electronic configuration t_{2g} orbitals are half filled . But in Fe²⁺ to Fe³⁺ Changes is d⁶ to d⁵ b) Atomic number (Z)=27, it is Co with configuration 3d⁷,4s² In Co²⁺, the configuration is 3d⁷. Now, Number of unpaired electrons =3 magnetic moment, μ=√n(n+2)= √3(3+2)=3.87 BM 				
				1	
				1	
22				1	16
22	a) It states that "the partial pressure of the gas in vapour phase (p) is proportional to			1	46
	the mole fraction of the gas (x) in the solution".				
	b) Since number of paricles decreases, hence van't Hoff factor (i) will decrease and		1	58	
	freezing point of the solution will increase.				
	c) Molality is considered better for expressing the concentration as compared to		1	37	
	molarity because the molarity changes as volume of the solution changes with				
	temperature but molality				
23	a)				94
23	$Al_2O_2 + 6e^{i\theta}$	$\rightarrow 2A1 + 3O^{2-}$		1	74
		(2×27) g		1	
	6F				
	To produce 54 g of Al,	charge needed $= 6F$			
	To produce 40 g of Al,	charge needed = $\frac{(40g)}{(54g)}$	$\times (6F) = 4.44F.$		
	b) At anode= Br_2 , at cathe	ode=Cu		¹ / ₂ + ¹ / ₂	87
	c) Λ^{o} for NaBr is calculated b	y the following expression.		1	
	Λ° NaBr = λ° NaCl + λ° KE				
					83
	=126+152 - 150=1	28 Scm ⁻ mol			

HY/CHEM-XII(MS)/SET-1

24	a) [Co(NH ₃) ₅ (CO ₃)]Cl	1	249
	b) Heating removes the water molecule from the coordination sphere. As a result,		
	there is no crystal field splitting. Hence no colour is observed.	1	259
	c) $t_{2g}^4 e_g^2$	1	
25	$k = \frac{2.303}{t} \log \frac{[R_0]}{[R]}, t_{1/2} = 3 \text{ hrs}, t = 8 \text{ hrs}, \frac{[R]}{[R_0]} = ?$	1/2	
	$t_{1/2} = 3.0 \text{ hrs}, \therefore k = \frac{0.693}{t_{1/2}} = \frac{0.693}{3} = 0.231 \text{ hr}^{-1}$	1⁄2	
	Hence, $0.231 = \frac{2.303}{8} \log \frac{[R_0]}{[R]}$	1/2	122
	or, $\log \frac{[R_0]}{[R]} = 0.8024$	1/2	
	or, $\frac{[R_0]}{[R]}$ = Antilog (0.8024) = 6.345	1/2	
	or, $\frac{[R]}{[R_0]} = \frac{1}{6.345} = 0.158$	1/2	
26	Any three		206
	a)		
	$ \begin{array}{c} NH_2 \\ \hline NH_2 \\ \hline Nh_2 Cl^{-} \\ HCl + HNO_2 \\ \hline (NaNO_2 + HCl) \\ \hline O - 5^*C \end{array} $ $ \begin{array}{c} N_2 Cl^{-} \\ HBr \\ \hline HBr \\ \hline O + N_2 \end{array} $	1	
	b) As all the hydrogen atoms are equivalent and replacement of any hydrogen will give the same product.	1	301
	$\boldsymbol{\Pi}_{3}\mathbf{C} \longrightarrow \begin{bmatrix} \mathbf{C} \\ \mathbf{\Pi}_{3} \end{bmatrix}$ $\mathbf{C} \mathbf{H}_{3} \qquad (\text{Neopentane})$		
	c) In haloarenes, NO ₂ group present at o/p position results in the stabilisation of resulting carbanion by-R and - I effects and therefore increases the reactivity of haloarenes towards nucleophilic substitution reactions.	1	313
	d) 2, 2-Bis (4-chlorophenyl)-1,1,1-trichloroethane	1	318
27	a) $CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COOH + C_2H_5OH(any other suitable example)$ b)	1	102
	$-\frac{dx}{dt} = k[A][B]^2$	1	
	c) 1	1	

A		
ρ (resistivity) = $\frac{R \times A}{l} = \frac{5.55 \times 10^3 \Omega \times 0.785 \mathrm{cm}^2}{50 \mathrm{cm}} = 87.135 \Omega \mathrm{cm}.$	1	
$\kappa = \frac{1}{\rho} = \frac{1}{87.135 \Omega \mathrm{cm}} = 0.01148 \mathrm{S} \mathrm{cm}^{-1}$	1	
$\Lambda_m = \frac{\kappa \times 1000}{M} = \frac{0.01148 \times 1000}{0.05 M} = 229.6 \text{ S cm}^2 \text{ mol}^{-1}$	1	
a) inversion of configurationb)	1	171- 174
	1	174
c) But-2-ene $H_3C - H_2 - CH_3 \xrightarrow{\text{alc KOII}} H_3C - CH_3 \xrightarrow{H_3C} C - CH_3$	1+1	
Br OR a) 1-Bromopentane will be more reactive as it least crowded for an S _N 2 reaction. b) 2 -Bromopentane has a chiral carbon. Therefore, it is optically active	1 1	
30 a)		88,89
The overall reaction is		
Pb (s) + PbO ₂ (s) + 4H ⁺ (aq) + 2SO ₄ $^{2-}$ (aq) \longrightarrow 2PbSO ₄ (s) + 2H ₂ O(I)	1	
OR		
Due to the porous casing, a substance in the cell leaks out, corrodes the metal and the lifetime of the cell is reduced. On the other hand, the mercury cell does not involve any ion in the solution during the reactions to change its lifetime.	1	
 b) The galvanic cells in which the energy of combustion of fuels is directly converted into electrical energy are called fuel cells. One of the reactants is fuel such as hydrogen or methanol. The reactants are not placed within the cell but they are continuously supplied to the electrodes from the reservoir. 	1⁄2	
Advantages High efficiency, non polluting (any one)		
C) $E_{\text{cell}}^0 = E_{\text{cathode}}^0 - E_{\text{anode}}^0 = E_{\text{Ag}}^\circ - E_{\text{Zn}}^\circ = 0.344 - (-0.76) = 1.104 \text{ V}$	1⁄2 1	
$\Delta G^{0} = -nF E^{0}_{cell} = -2 \times 96500 \times 1.104 = -213072 \text{ J} = -213 \text{ kJ}$	1	
31 a) i) The bonds between chloroform molecules and molecules of acetone are dipole- dipole interactions but on mixing, the chloroform and acetone molecules, they	1	43,45, 54
start forming hydrogen bonds which are stronger bonds resulting in the release		
of energy. This gives rise to an increase in temperature.	1	
ii) To avoid bends, as well as, the toxic effects of high concentrations of nitrogen		

	in the blood, the tanks used by scuba divers are filled with air diluted with		
	helium.		
	iii) The magnitude of osmotic pressure is large even for very dilute solution and it	1	
	can be measured at room temperature.(any other suitable reason)		
	b) $\mathbf{M}_{\mathrm{B}} = \frac{\mathbf{K}_{\mathrm{f}} \times \mathbf{W}_{\mathrm{B}} \times 1000}{\Delta T_{\mathrm{f}} \times \mathbf{W}_{\mathrm{A}}}$		
	$\Delta T_{f} \times W_{A}$	1/2	
	$M_{\rm B} = \frac{3.83 {\rm K} {\rm kg mol^{-1}} \times 2.56 \times 1000 {\rm g} {\rm kg^{-1}}}{100 {\rm g} \times 0.383 {\rm K}} = 256 {\rm g mol^{-1}}$		
	$100 \text{ g} \times 0.383 \text{ K}$		
	Now, molecular mass of $S_x = x \times 32 = 256$	1⁄2	
	$x = \frac{256}{32} = 8$		
	32	1⁄2	
	Therefore, formula of sulphur = S_8	1⁄2	
	07		51 54
	OR Declary 1. Han stania a lation	1/.1/	51,54
	a) i)Beaker 1:Hypotonic solution, Beaker 2:Hypertonic solution	1/2+1/2	
	ii)In beaker 3 the size of potato cube remains the same because of isotonic	1	
	solution which has the same concentration of solutes as that of potato cells. So		
	water is neither lost or gained by the potato cells.		
	b) $\Delta T_f = 0 - (-0.068) = 0.068 K$	1⁄2	
	$\Delta T_{f} = i \times K_{f} \times m$		
	$0.068 = i \times 1.86 \times 0.01$	1⁄2	
	So, i=3.6559	1/	
		1⁄2	
	Again, $\alpha = \frac{i-1}{n-1}$		
	for AlCl ₃ \rightleftharpoons Al ³⁺ +3Cl ⁻ ; n=1+3=4		
		1/	
	$\alpha = \frac{3.6559 - 1}{4 - 1} = 0.8833$	1⁄2	
	% of dissociation = 88.33%		
	c) The freezing point of water decreases, due to which the snow on the road starts to	1	
	melt and clears the road.	1	
32	Any five:		244,
52	a) Hybridization: d ² sp ³ , Magnetic character: Diamagnetic	1/2+1/2	249,
	b) $[Cr(H_2O)_5Cl]Cl_2.H_2O$		252
		1	
	c) No, ionization isomers are possible by exchange of ligand with counter ion only	1/2+1/2	
	and not by exchange of central metal ion.		
	d) In both $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$, Ni is in +2 oxidation state with		
	configuration $3d^8$ and it contains two unpaired electrons. In $[NiCl_4]^{2-}$ due to	1	
	presence of weak ligand Cl ⁻ no pairing takes place and hence it is paramagnetic		
	whereas in $[Ni(CN)_4]^{2-}$, CN^- is a strong field ligand and pairing occurs and		
	whereas in [141(014)], Civits a subing field rigand and parting occurs allu		
L	HV/CHFM_XII(MS)/SFT_1	Page 5 of	_

ii) $CH_3 - CH = CH_2 + (H - BH_2)_2 \longrightarrow CH_3 - CH_2 - CH_2$		
$\begin{array}{c} CH_3 - CH = CH_2 + (H - BH_2)_2 \longrightarrow CH_3 - CH - CH_2 \\ Propene & Diborane & & \\ H & BH_2 \end{array}$	1	
СН3-СН=СН2		
(CH ₃ −CH ₂ −CH ₂) ₃ B ← CH ₃ −CH=CH ₂ (CH ₃ −CH ₂ −CH ₂) ₂ BH		
н20 3н202, он		
$3CH_3 - CH_2 - CH_2 - OH + B(OH)_3$		
Propan-1-ol		
b)Ethoxyethane		
Step 1	1/2	
$CH_3-CH_2-\dot{\mathbf{O}}-\mathbf{H}+\mathbf{H}^+ \longrightarrow CH_3-CH_2^{\pm}\dot{\mathbf{O}}-\mathbf{H}$		
Step 2	1⁄2	
$CH_3CH_2 - \overset{\bullet}{\underset{H}{\bigcup}} + \overset{\bullet}{\underset{H}{\bigcup}} - \overset{\bullet}{\underset{H}{\bigg} - \overset{\bullet}{\underset{H}{\bigg}} - \overset{\bullet}{\underset{H}{\bigg} - \overset{\bullet}{\underset{H}{\bigg}} - \overset{\bullet}{\underset{H}{\bigg} - \overset{\bullet}{\underset{H}{\underset{H}{\iota} - \overset{\bullet}{\underset{H}{\bigg} - \overset{\bullet}{\underset{H}{\bigg} - \overset{\bullet}{\underset{H}{\underset{H}{\underset{H}{\iota} - \overset{\bullet}{\underset{H}{\underset{H}{\underset{H}{\iota} - \overset{\bullet}{\underset{H}{\iota} - \overset{\bullet}{\underset{H}{\underset{H}{\underset{H}{\underset{H}{\underset{H}{\underset{H}{\underset{H}{\underset$	1	
Step 3		
$CH_3CH_2 \xrightarrow{\bullet} O - CH_2CH_3 \longrightarrow CH_3CH_2 - O - CH_2CH_3 + H^+$	1	

HY/CHEM-XII(MS)/SET-1