ANNEXURE-A

DAV PUBLIC SCHOOLS, ODISHA ZONE HALF YEARLY EXAMINATION(2023-24)

SUBJECT: PHYSICS (SET-2) Time: 3 hours

BLUE PRINT OF QUESTION PAPER

S.L	Name of the Chapters	Marks	MCQ&	SA-I	SA-II	CB	LA	Total
NO	Name of the Chapters	Allotted	AR	2	3	4	L A 5	Marks
nu		in	AR 1mark	² marks	5 marks	- mark	mark	
•		nn syllabus	1111al K	mai ks	IIIai KS			
1	Electric charges &	synabus	2	1	1	S	s	12
1	Fields		[2MCQ]	1	1		1	12
2	Electrostatic potential &	-	1	1	1	1		10
2	Capacitance	31	[1MCQ]	1	1	1		10
3	Current electricity		4	1	1			9
5			(3MCQ+	1	1			,
			1-AR)					
			1 1 1 1 1 1 1					
4	Moving charges &		2	1	1		1	12
	Magnetism		(1MCQ+	_				
	6		1-AR)					
		34	,					
5	Magnetism & Matter		1		1			04
			[1MCQ]					
6	Electromagnetic		2	1		1		08
	induction		[2MCQ]					
7	Alternating current		2		1		1	10
			(1MCQ+					
			1-AR)					
8	Electromagnetic Waves	05	2		1			05
			(1MCQ+					
			1-AR)					
Tota	l	70	1×16 =	2×5	3 × 7	4 × 2	5 × 3	70
			16	= 10	= 21	= 8	= 15	

CLASS : XII

Max. Mark:70

ANNEXURE-B

DAV PUBLIC SCHOOLS, ODISHA ZONE HALF YEARLY EXAMINATION(2023-24)

SUBJECT: PHYSICS (SET-2)

CLASS :XII Max.Marks:70

Time: 3 hours

QUESTION WISE ANALYSIS

Q.NO.	CHAPTERS	FORMS OF QUESTION	MARKS ALLOT TED	(R) ,(U) , (A) , (Analyzing, Evaluating , Creating)
1	Alternating Current	MCQ	1	A
2	Electric charges & Fields	MCQ	1	A
3	Electrostatic potential & Capacitance	MCQ	1	U
4	Current electricity	MCQ	1	А
5	Current electricity	MCQ	1	U
6	Current electricity	MCQ	1	R
7	Moving charges & Magnetism	MCQ	1	U
8	Magnetism & Matter	MCQ	1	R
9	Electromagnetic Induction	MCQ	1	А
10	Electromagnetic Induction	MCQ	1	Α
11	Electric charges & Fields	MCQ	1	U
12	Electromagnetic Waves	MCQ	1	R
13	Electromagnetic Waves	MCQ (AR)	1	Analyse
14	Current electricity	MCQ(AR)	1	Analyse
15	Moving charges & Magnetism	MCQ (AR)	1	Analyse
16	Alternating Current	MCQ(AR)	1	Analyse
17	Electric charges & Fields	SA-I	2	R+U
18	Electrostatic potential & Capacitance	SA-I	2	U
19	Current electricity	SA-I	2	A
20	Moving charges & Magnetism	SA-I	2	R + U
21	Electromagnetic Induction	SA-I	2	Analyse
22	Electric charges & Fields	SA-II	3	U
23	Electrostatic potential & Capacitance	SA-II	3	A
24	Current electricity	SA-II	3	U
25	Moving charges & Magnetism	SA-II	3	С
26	Magnetism & Matter	SA-II	3	U
27	Alternating current	SA-II	3	Е
28	Electromagnetic waves	SA-II	3	A

29	Electrostatic potential &	СВ	4	A + E + C
	Capacitance			
30	Electromagnetic Induction	CB	4	A + E + C
31	Alternating current	LA	5	A+ U +C
32	Electric charges & Fields	LA	5	R+U+A
33	Moving charges & Magnetism	LA	5	A+E+C
TOTAL			70	

Remembering & Understanding:	27Marks	38%
Application:	22Marks	32%
Analyzing, Evaluating & Creating	21Marks	30%
TOTAL	70Marks	100%

		AN	NEXURE-C
	DAV PUBLIC SCHOOLS, ODISHA ZO	NE	
	HALF YEARLY EXAMINATION (2023)	-24)	
SUB.	JECT :PHYSICS (SET-2)		CLASS : XII
Q. NO.	MARKING SCHEME VALUE POINTS	MARKS ALLOTTED	PAGE NO. OF NCERT TEXT BOOK (OLD BOOK)
	SECTION-A		
1	(c)	1	248
2	(d)	1	47
3	(c)	1	74
4	(b)	1	98
5	(a)	1	110
6	(b)	1	98
7	(d)	1	135
8		1	192
9 10	(b) (d)	1	230 212
10	(d) (c)	1	17
11	(c) (d)	1	282
12	(a)	1	202
14	(c)	1	104
15	(b)	1	138
16	(a)	1	222
	SECTION-B		
17	The uniform charge –Q will be induced on inner surface of the shell		
	and +Q will be induced on outer surface. This is follows from conservation of	1	
	charge and no static charges reside in the interior of a metal in electrical		
	equilibrium.		
	Using Gauss's law the field at P ₁ :	1	39
	E.4 π r ₁ ² =Q/ ϵ_0		
	Where $Qen=+Q$, charge inside Gaussian surface of radius r_1 .		
	Thus, $E=Q/4\pi\epsilon_0 r_1^2$		

10	0 0		07
18.	$\frac{q_1}{4\pi \in_0 r} = -\frac{q_2}{4\pi \in_0 (d-r)}$	0.5	87
	$4\pi \in_0 r \qquad 4\pi \in_0 (a-r)$	0.0	
	$\frac{q_1}{r} = \frac{-q_2}{d-r}$		
	5×10^{-8} (-3×10 ⁻⁸)		
	$\frac{5 \times 10^{-8}}{r} = -\frac{\left(-3 \times 10^{-8}\right)}{\left(0.16 - r\right)}$		
	$\frac{0.16}{r} - 1 = \frac{3}{5}$	1	
		1	
	$\frac{0.16}{r} = \frac{8}{5}$		
	r = 5 r = 0.1 m = 10 cm	0.5	
	OR $1 - \frac{1}{2} - \frac{2}{2} - \frac{1}{2} - \frac{2}{2} - \frac{4 \times 10^{-7} \text{ C}}{2}$		55
	(a) $V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r} = 9 \times 10^9 \text{ Nm}^2 \text{ C}^{-2} \times \frac{4 \times 10^{-7} \text{ C}}{0.09 \text{ m}}$		
	$= 4 \times 10^4 \mathrm{V}$	1	
	(b) $W = qV = 2 \times 10^{-9} \text{C} \times 4 \times 10^{4} \text{V}$ = $8 \times 10^{-5} \text{J}$		
	No, work done will be path independent. Any arbitrary infinitesimal	0.5	
	path can be resolved into two perpendicular displacements: One along \mathbf{r} and another perpendicular to \mathbf{r} . The work done corresponding to	0.5	
	the later will be zero.	0.0	
10	The current in the circuit		100
19			128
	$I = \frac{E_1 - E_2}{R_{\text{ext}} + r} = \frac{120 - 8}{15.5 + 0.5}$		
	$R_{\rm ext} + r$ 15.5 + 0.5	0.5	
	or $I = \frac{112}{16} = 7 \text{ A}$	0.5	
	$rac{1}{16} = 7$ A	0.5	
	Terminal voltage of the battery during charging :		
	V = E + lr = 8 + 7(0.5) = 11.5 V	0.5	
	A series resistance is joined in the charging circuit to limit the	0.5	
20	excessive current so that charging is slow and permanent.	0.5	120
20	$\frac{mV^2}{r} = qVB$		138
	r	0.5	
	$\rightarrow m - mV$		
	$\Rightarrow r = \frac{mV}{qB}$	0.5	
	17	0.5	
	$\nu = \frac{V}{2\pi r}$		
	2111	0.5	
	$\nu = \frac{VqB}{2\pi mV}$		
	$v = \frac{1}{2\pi mV}$		
	qB		
	$v = \frac{qB}{2\pi m}$	0.5	
J	Physics XII (Set-2)	•	PAGE-5

21.	(a) The bulb B lights because an emf is induced in coil Q due to change	1	206
	in magnetic flux crossing through it.		
	(b) Bulb gets dimmer if the coil Q is moved towards left because of	1	
	mutual induction, and hence induced emf in coil Q decreases with		
	separation between the coils.		
- 22	SECTION-C		21
22	(a)		31
		0.5	
	\Rightarrow \Rightarrow AAB		
	$\vec{F}_2 = -q\vec{E} \stackrel{A}{\longleftarrow} \vec{q} $		
	Net force on electric dipole in uniform electric field is		
	$F = F_1 - F_2 = qE - qE = 0$. Thus there is no translational motion.	1	
	(b) Torque on the dipole		
	$\tau = F (2l \sin \theta) = qE \ 2l \sin \theta$		
	$\vec{\tau} = \vec{p} \times \vec{E}$		
	$\tau - p \times E$	1	
	The direction of torque is perpendicularly into the plane of paper.	0.5	
	The uncertain of torque is perpendicularly into the plane of paper.	0.5	
23	(a) $Q = n q$	0.5	54
	(b)		
	$4 - R^3 - m 4 - m^3 \rightarrow R - m^{1/3}$	0.5	
	$\frac{4}{3}\pi R^3 = n\frac{4}{3}\pi r^3 \Rightarrow R = n^{1/3}r$	0.5	
	0		
	If potential of a small drop, $V = \frac{Q}{C}$;		
	nO 2/3 v		
	then potential of a big drop, $V' = \frac{nQ}{n^{1/3}C} = n^{2/3}V$	1	
	(c)		
	Capacity of each droplet, $C = 4\pi\varepsilon_0 r$	1	
	Capacity of a big drop, $C' = 4\pi\varepsilon_0 R = 4\pi\varepsilon_0 n^{1/3}r = n^{1/3} C$	1	
	-		
	OR		
	(a) $V = \frac{KQ}{r}$		
	I. I.	0.5	
	$Q = \frac{V}{K\left(\frac{1}{r}\right)}$	0.5	
	$K\left(\frac{-}{r}\right)$		
	$\frac{Q_1}{Q_2} = \frac{\tan\theta_1}{\tan\theta_2} = \frac{\tan^2\theta_0}{\tan^2\theta_0} = 3:1$	1	
	$Q_2 tan\theta_2 tan30^0 0.1$		
	Physics XII (Set-2)	0.5	PAGE-6

$$\begin{array}{|c|c|c|c|c|} \hline (b) & \frac{Q_1}{4\pi_0R_1} = \frac{Q_2}{4\pi_0R_2} \\ \hline Q_2 = R_1 \\ \hline Q_2 = Q_2 & (R_2)^2 & = R_2 \\ \hline Q_2 = Q_2 & (R_2$$

140 $-\frac{1}{2}$ For the charged particle to more undeflected Net force $\overline{F} = \overline{F}_{R} + \overline{F}_{m}^{-} = 0$ $f_{R}^{-} = -\overline{F}_{R}^{-} + \overline{F}_{R}^{-} = 0$ $f_{R}^{$	07			
Not force $\overline{F} = \overline{F_{rr}} + \overline{F_{rr}} = 0$ $f_{R}^{2} = -F_{rr} + \overline{F_{rr}} = 0$ (1) $\overline{F_{R}} \to \text{dectic force, } \overline{F_{rr}} \to \text{magnetic force}$ (1) $\overline{F_{R}} = -\frac{1}{2} + \frac{1}{2} + \frac{1}{2$	25	$n \frac{m}{2} $	0.5	140
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Net force $\overline{F} = \overline{F_E} + \overline{F_m} = 0$	0.5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \overline{F_E} = \overline{F_m} $		
$E = \frac{\sqrt{Mai}}{2\pi r} \qquad (5)$ Magnetic force F_m is towards wire. \therefore Electric force and electric field should be away from the line. 1 $26 (a) PQ_1 \text{ and } PQ_2$ $(b) (i) PQ_3, PQ_6 \text{ (stable)}; (ii) PQ_5, PQ_4 \text{ (unstable)}$ $(b) (i) PQ_3, PQ_6 \text{ (stable)}; (ii) PQ_5, PQ_4 \text{ (unstable)}$ $(c) PQ_6$ Reason: $B_p = -\frac{\mu_0 2}{4\pi} \frac{m_p}{r^3} (\text{on the normal bisector})$ $B_p = \frac{\mu_0 2}{4\pi} \frac{m_p}{r^3} (\text{on the axis})$ $27 (a)$ $Civen: V_{rms} = 50 \text{ V}, v = \frac{50}{\pi} \text{ Hz}, R = 500 \Omega, C = 20 \times 10^{-6} \text{ F}, L = 1.0 \text{ H}$ As we know $X_c = \frac{1}{2\pi \sqrt{C}} = \frac{1}{2\pi \sqrt{S_m^2 + (X_c - X_c)^2}} = 500 \Omega$ $(c) S = \frac{1}{2\pi \sqrt{C}} = 1$		E = VB (3) $B = \frac{MoI}{2\pi r}$ (4)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$E = \frac{VMoI}{2\pi r} $ (5) Magnetic force F_m is towards wire.	1	
$\begin{array}{c c} (b) (i) PQ_3, PQ_6 (stable); (ii) PQ_5, PQ_4 (unstable) \\ (c) PQ_6 \\ \text{Reason:} \\ \mathbf{B}_{\mathbf{p}} = -\frac{\mu_0}{4\pi} \frac{\mathbf{m}_{\mathbf{p}}}{r^3} \text{(on the normal bisector)} \\ \hline \mathbf{B}_{\mathbf{p}} = \frac{\mu_0 2}{4\pi} \frac{\mathbf{m}_{\mathbf{p}}}{r^3} \text{(on the axis)} \\ \hline 27 \qquad (a) \\ \hline 27 \qquad (a) \\ \hline Given: V_{rms} = 50 \text{ V, } \mathbf{v} = \frac{50}{\pi} \text{ Hz}, R = 300 \Omega, C = 20 \times 10^{-6} \text{ F}, L = 1.0 \text{ H} \\ As we know \qquad X_C = \frac{1}{2\pi vC} = \frac{1}{2\pi \times \frac{50}{\pi} \times 20 \times 10^{-6}} = 500 \Omega \\ \hline As we know \qquad X_L = 2\pi vL = 2\pi \times \frac{50}{\pi} \times 1 = 100 \Omega \\ \therefore \qquad Z = \sqrt{R^2 + (X_C - X_L)^2} = \sqrt{90000 + (500 - 100)^2} \\ \end{array}$		avit Ferror	1	
$\begin{array}{c cccc} (b) (i) PQ_{3}, PQ_{6} (stable); (ii) PQ_{5}, PQ_{4} (unstable) & 0.5 + 0.5 \\ (c) PQ_{6} & 0.5 \\ \text{Reason:} & 0.5 \\ \hline \mathbf{B}_{\mathbf{p}} = -\frac{\mu_{0}}{4\pi} \frac{\mathbf{m}_{\mathbf{p}}}{r^{3}} & (on \ the \ normal \ bisector) & 0.5 \\ \hline \mathbf{B}_{\mathbf{p}} = \frac{\mu_{0}2}{4\pi} \frac{\mathbf{m}_{\mathbf{p}}}{r^{3}} & (on \ the \ axis) & 0.5 \\ \hline \mathbf{Z}7 & (a) & 0.5 \\ \text{Given: } V_{\text{rms}} = 50 \ \text{V}, \ \mathbf{v} = \frac{50}{\pi} \ \text{Hz}, \ R = 300 \ \Omega, \ C = 20 \times 10^{-6} \ \text{F}, \ L = 1.0 \ \text{H} \\ \text{As we know} & X_{C} = \frac{1}{2\pi vC} = \frac{1}{2\pi \times \frac{50}{\pi} \times 20 \times 10^{-6}} = 500 \ \Omega \\ \text{As we know} & X_{L} = 2\pi vL = 2\pi \times \frac{50}{\pi} \times 1 = 100 \ \Omega \\ \therefore & Z = \sqrt{R^{2} + (X_{C} - X_{L})^{2}} = \sqrt{90000 + (500 - 100)^{2}} \\ \end{array}$	26	(a) PQ_1 and PQ_2	0.5 + 0.5	181
Reason: $\mathbf{B}_{p} = -\frac{\mu_{0}}{4\pi} \frac{\mathbf{m}_{p}}{r^{3}}$ (on the normal bisector) 0.5 $\mathbf{B}_{p} = \frac{\mu_{0}2}{4\pi} \frac{\mathbf{m}_{p}}{r^{3}}$ (on the axis) 0.5 27 (a) 0.5 Given: $V_{rms} = 50$ V, $v = \frac{50}{\pi}$ Hz, $R = 300 \Omega$, $C = 20 \times 10^{-6}$ F, $L = 1.0$ H 0.5 As we know $X_{c} = \frac{1}{2\pi vC} = \frac{1}{2\pi \times \frac{50}{\pi} \times 20 \times 10^{-6}} = 500 \Omega$ 0.5 As we know $X_{L} = 2\pi vL = 2\pi \times \frac{50}{\pi} \times 1 = 100 \Omega$ 0.5 \therefore $Z = \sqrt{R^{2} + (X_{C} - X_{L})^{2}} = \sqrt{90000 + (500 - 100)^{2}}$ 0.5			0.5 + 0.5	
$B_{p} = \frac{\mu_{0}2}{4\pi} \frac{m_{p}}{r^{3}} \text{(on the axis)} \qquad 0.5$ $27 \qquad (a) \qquad 266$ $Given: V_{rms} = 50 \text{ V}, v = \frac{50}{\pi} \text{ Hz}, R = 300 \Omega, C = 20 \times 10^{-6} \text{ F}, L = 1.0 \text{ H}$ $As we know \qquad X_{C} = \frac{1}{2\pi vC} = \frac{1}{2\pi \times \frac{50}{\pi} \times 20 \times 10^{-6}} = 500 \Omega$ $As we know \qquad X_{L} = 2\pi vL = 2\pi \times \frac{50}{\pi} \times 1 = 100 \Omega$ $\therefore \qquad Z = \sqrt{R^{2} + (X_{C} - X_{L})^{2}} = \sqrt{90000 + (500 - 100)^{2}}$ 0.5			0.5	
27 (a) Given: $V_{\rm rms} = 50$ V, $v = \frac{50}{\pi}$ Hz, $R = 300 \Omega$, $C = 20 \times 10^{-6}$ F, $L = 1.0$ H As we know $X_C = \frac{1}{2\pi vC} = \frac{1}{2\pi \times \frac{50}{\pi} \times 20 \times 10^{-6}} = 500 \Omega$ As we know $X_L = 2\pi vL = 2\pi \times \frac{50}{\pi} \times 1 = 100 \Omega$ $\therefore \qquad Z = \sqrt{R^2 + (X_C - X_L)^2} = \sqrt{90000 + (500 - 100)^2}$ (0.5)			0.5	
As we know $X_C = \frac{1}{2\pi\nu C} = \frac{1}{2\pi\times \frac{50}{\pi} \times 20 \times 10^{-6}} = 500 \ \Omega$ As we know $X_L = 2\pi\nu L = 2\pi \times \frac{50}{\pi} \times 1 = 100 \ \Omega$ $\therefore \qquad Z = \sqrt{R^2 + (X_C - X_L)^2} = \sqrt{90000 + (500 - 100)^2}$ 0.5	27			266
As we know $X_C = \frac{1}{2\pi\nu C} = \frac{1}{2\pi\nu C} = 500 \Omega$ As we know $X_L = 2\pi\nu L = 2\pi \times \frac{50}{\pi} \times 1 = 100 \Omega$ $\therefore \qquad Z = \sqrt{R^2 + (X_C - X_L)^2} = \sqrt{90000 + (500 - 100)^2}$ 0.5		R. R	0.5	
$\therefore \qquad Z = \sqrt{R^2 + (X_C - X_L)^2} = \sqrt{90000 + (500 - 100)^2}$		As we know $X_c = \frac{1}{2\pi vC} = \frac{1}{2\pi \times \frac{50}{\pi} \times 20 \times 10^{-6}} = 500 \ \Omega$		
			0.5	
$Z = \sqrt{90000 + 160000} = \sqrt{250000} = 500 \ \Omega \tag{0.5}$		$Z = \sqrt{R^2 + (X_C - X_L)^2} = \sqrt{90000 + (500 - 100)^2}$ $Z = \sqrt{90000 + 160000} = \sqrt{250000} = 500 \ \Omega$	0.5	

	(b)		
	50		
	$I_{\rm rms} = \frac{50}{5 \times 10^2} = 0.1 {\rm A}$	0.5	
	5×10		
	(c)		
	Power factor $\cos \phi = \frac{R}{Z} = \frac{3}{5} = 0.6$	1	
	2 5	1	
28			287
20	$E_y = E_0 \cos(\omega t - kx) \text{ N/C}$		207
	$\therefore E_0 = 4 \times 10^5 \text{ N/C}, \omega = 3.14 \times 10^8 \text{ rad s}^{-1}, k = 1.57 \text{ rad.m}^{-1}$		
	(a)		
	$v = \frac{\omega}{k} = \frac{3.14 \times 10^8}{1.57}$ m/s = 2 × 10 ⁸ m/s	1	
	-		
	(b)		
	$\mu = \frac{c}{v} = \frac{3 \times 10^8}{2 \times 10^8} = 1.5$	1	
	$\mu = \frac{1}{v} = \frac{1}{2 \times 10^8} = 1.5$		
1	(c)		
	$E_0 = E_0 = 4 \times 10^5 \text{ m}$	1	
	$\frac{E_0}{B_0} = c \implies B_0 = \frac{E_0}{c} = \frac{4 \times 10^5}{3 \times 10^8} \text{T} = 1.33 \times 10^{-5} \text{T}$		
	SECTION-D		
20		1	72.01
29	(i) (c) (d)	1	73,81
	(ii) (d)	1	
	(iii) (b)	1	
	(iv) (a)	1	
	OR		
	(iv) (b)	1	
30	(i) (c)	1	222,224
	(ii) (b)	1	
	(iii) (a)	1	
	(iv) (b)	1	
1	OR		
	(iv) (d)	1	
	SECTION-E		
31			245
	- ssse I with		
		0.5	
	\smile	0.0	
	(a)		
1	Q V _{mR}		
1	A PM		
	and the second s		
1			
	Vmc	1	
		1	

Principle – Based on the principle of mutual induction (b) Assumptions-	0.5	
(i) the primary resistance and current are small;		
(ii) the same flux links both the primary and the secondary as very little		
flux escapes from the core, and		
(iii) the secondary current is small.	1	
Theory-		
$\varepsilon_p = -N_p \frac{\mathrm{d}\phi}{\mathrm{d}t} \qquad \varepsilon_s = -N_s \frac{\mathrm{d}\phi}{\mathrm{d}t}$		
But $\varepsilon_p = V_p$. If this were not so, the primary current would be infinite		
since the primary has zero resistance(as assumed). If the secondary is		
an open circuit or the current taken from it is small, then to a good		
approximation $\varepsilon_s = V_s$ where V_s is the voltage across the secondary.		
$v_{\rm s} = -N_{\rm s} \frac{d\phi}{dt}$		
$v_p = -N_p \frac{d\phi}{dt}$	0.5	
$\frac{v_s}{v_p} = \frac{N_s}{N_p}$		
If the transformer is assumed to be 100% efficient (no energy losses),	0.5	
the power input is equal to the power output, and since $p = i v$,		
$i_p v_p = i_s v_s$		
$\frac{i_p}{i_s} = \frac{v_s}{v_p} = \frac{N_s}{N_p}$	0.5	
(c) The large scale transmission and distribution of electrical energy	0.5	
over long distances is done with the use of transformers. The voltage		
output of the generator is stepped-up (so that current is reduced and	1	
consequently, the I^2R loss is cut down).		

		1	20.25
32. (a)	Gauss's Law states that the net outward flux through any closed		39,35
surfa	ce is equal to $\frac{1}{\epsilon_0}$ times the charge enclosed by the closed surface.	0.5	
(i) W	Then the point P is inside the shell.		
In thi	s case, the Gaussian surface lies inside the spherical shell and		
hence	e no charge is enclosed by it.	0.5	
	$\oint \vec{E} \cdot \vec{ds} = \frac{1}{\varepsilon_0} \times 0 = 0$		
or E	= 0, i.e. there is no electric field inside a charged spherical shell.		
(ii) W	When the point <i>P</i> lies outside the shell		
At ev	very point of this shell, the \vec{E} and \vec{ds} are directed outwards in the		
same	direction, i.e. $\theta = 0$.	0.5	
	\frown		
	$\oint \vec{E} d\vec{s} = \oint E ds = E \oint ds = E \times 4\pi r_2^2 \qquad \dots (i)$		
Also,	by Gauss's law		
	$\oint \vec{E} \vec{ds} = \frac{1}{\varepsilon_0} Q \qquad \dots (\vec{u})$		
From	\mathbf{n} (i) and (ii), we get		
	$E \times 4\pi r^2 = \frac{1}{\varepsilon_0} Q \implies E = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q}{r^2} \qquad [\because r = r_2]$		
		1.5	
(1	o)		
	$q = \epsilon_0 \phi = \epsilon_0 (\phi_R + \phi_L)$		28,16
	$=\epsilon_0(4a^3-2a^3)=2\epsilon_0a^3$	1+1	
	OR		
(8	a)		
	$E_{+q} \sin \theta \qquad E_{+q} \cos \theta$ $E_{-q} \cos \theta$ $E_{-q} \sin \theta \qquad E_{-q} \cos \theta$ $E_{-q} \sin \theta$	1	
	!2 0		

	$\vec{E} = -(E_{+q} + E_{-q}) \cos \theta \hat{p}$		
	$\vec{E} = -\frac{2qa}{4\pi \varepsilon_0 (x^2 + a^2)^{3/2}}\hat{p}$		
	$\vec{E} = -\frac{\vec{p}}{4\pi\varepsilon_0 (x^2 + a^2)^{3/2}}$	1.5	
	For $x >> a$	0.5	
	$\overrightarrow{E} = -\frac{1}{4\pi\epsilon_0}\frac{\overrightarrow{P}}{x^3}$		
	(b) $\vec{F} = k \frac{q_1 q_2}{r^2} \hat{r}$		
	$r = \sqrt{2}a$		
	$\hat{r} = \frac{\hat{\iota} + \hat{j}}{\sqrt{2}}$		
	$\vec{F} = k \ q. \frac{2q}{(\sqrt{2}a)^2} \left(\frac{\hat{i} + \hat{j}}{\sqrt{2}}\right) = \frac{kq^2}{\sqrt{2}a^2} (\hat{i} + \hat{j})N$	2	
	$(\sqrt{2}a)^2 (\sqrt{2})^2 \sqrt{2}a^2$		
33	(a)		145
	dB cos b dB sin b	1	
	$ \vec{dB} = \frac{\mu_0}{4\pi} \frac{Idl \sin 90^\circ}{S^2}$ $dB = \frac{\mu_0}{4\pi} \frac{Idl}{S^2} = \frac{\mu_0}{4\pi} \frac{Idl}{(r^2 + x^2)} (\because S = \sqrt{r^2 + x^2})$ The direction of \vec{dB} is perpendicular to the plane containing \vec{S} and \vec{dl} . We resolve \vec{dB} into rectangular components $dB \cos \phi$ and $dB \sin \phi$.		

Thus, total magnetic field is given by $B = \int dB \sin \phi = \int \frac{\mu_0 I dl \sin \phi}{4\pi (r^2 + x^2)}$ $B = \frac{\mu_0 I}{4\pi (r^2 + x^2)} \frac{r}{(x^2 + r^2)^{1/2}} \cdot 2\pi r$	2	
$= \frac{\mu_0 I r^2}{2 (r^2 + x^2)^{3/2}}$ (b)Since the total length of the wire used remains the same,	1	
$N \times \pi d = N' \times \pi (2d)$		
N'=N/2		
Hence the ratio of the magnetic moments=M/M'		
=INA/IN'A'		
=NA/N'A'=Nd 2 /N'd' ² = 2 M' /M = 1/2	1	
OR		
(a) $ \begin{array}{c} $	0.5	154
each point on Y' due to current i_1 in XX' is given by $B_1 = \frac{\mu_0}{2\pi} \cdot \frac{i_1}{R}$		
$F_Y = i_2 B_1 l = i_2 \frac{\mu_0}{2\pi} \cdot \frac{i_1}{R} \cdot l$ Force per unit length of YY is given by	0.5	
Similarly $\frac{F_Y}{l} = \frac{\mu_0}{2\pi} \cdot \frac{i_1 i_2}{R}$ $\frac{F_X}{l} = \frac{\mu_0}{2\pi} \cdot \frac{i_1 i_2}{R}$	0.5	
$l = 2\pi - R$ The force is attractive in nature.	0.5	

The <i>ampere</i> is the value of that steady current which, when maintained in each of the two very long, straight, parallel conductors of negligible cross-section, and placed one metre apart in vacuum, would produce on each of these conductors a force equal to 2×10^{-7} newtons per metre of length.	1	
(b) $C \xrightarrow{F} I_2 = 5 A$ W = mg $A \xrightarrow{I_1 = 12 A}$ $D \xrightarrow{T} mm = r$	0.5	
$F = \frac{\mu_0}{4\pi} \cdot \frac{2I_1I_2}{r} = mg$ $m = \frac{\mu_0}{4\pi} \cdot \frac{2I_1I_2}{rg}$ $m = \frac{10^{-7} \times 12 \times 5 \times 2}{1 \times 10^{-3} \times 10}$	0.5	
$m = 12 \times 10^{-4} \text{ kg-m}^{-1}$ The direction of current in wire <i>CD</i> will be opposite to the direction of current in wire <i>AB</i> .	0.5	
	0.5	