ANNEXURE -A

DAV PUBLIC SCHOOLS, ODISHA ZONE

SUBJECT: - CHEMISTRY, CLASS: XI (Half Yearly) 2023-24

	BLUEPRINT OF QUESTION PAPER							
S l N o	Chapters / units	Marks Allotted in Syllabus	Sec-A VSA (MCQs) (16No.sx1)	Sec-B SA-I (5No.s.x2)	Sec-C SA-II (7No.s.x3)	Sec-D CBQ (2Nos.x4)	Sec-E LA (3Nos.x 5)	TOTAL (33No.s)
1	SOMEBASICCONCEPTSOFCHEMISTRYImage: Chemistry	14	4	1	1		1	7
2	STRUCTURE OF ATOM	16	4		1	1	1	7
3	CLASSIFICATION OF ELEMENTS	12	2	2	2			6
4	CHEMICAL BONDING	16	4	2	1		1	8
5	THERMODYNAMICS	12	2		2	1		5
M	ARKS	70	16x1=16	5x2=10	7x3=21	2x4=8	3x5=15	33

Subject: Chemistry Class: XI Full Mark: 70 As per the syllabus the typology of question as follows:

Nos. of Questions: 33

R & U \rightarrow	Remembering & Unde	rstanding 30%	21 MARKS
$\mathbf{APP} \rightarrow$	Application	30%	21 MARKS
AN, E & C -	→Analyzing, Evaluating	& Creating 40%	28 MARKS
			TOTAL = 70 MARKS

DAV PUBLIC SCHOOLS, ODISHA

Half-Yearly Exam.

SUBJECT: CHEMISTRY

CLASS : XI

	QUESTIONWISE ANALYSIS						
SI.		Forms of Question - (LA, CBQ, SA-II, SA-I,	Marks	(R&U),(A),			
No.	Chapters / units	VSA(MCQs)	Allotted	(AN,E&C)			
1	Some basic concepts of chemistry	(MCQs)	1	AN, E&C			
2	Structure of atom	(MCQs)	1	А			
3	Some basic concepts of chemistry	(MCQs)	1	AN, E&C			
4	Structure of atom	(MCQs)	1	А			
5	Some basic concepts of chemistry	(MCQs)	1	AN, E&C			
6	Structure of atom	(MCQs)	1	А			
7	Thermodynamics	(MCQs)	1	R & U			
8	Chemical Bonding	(MCQs)	1	R & U			
9	Chemical Bonding	(MCQs)	1	AN, E&C			
10	Classification of elements	(MCQs)	1	R & U			
11	Thermodynamics	(MCQs)	1	AN, E&C			
12	Chemical Bonding	(MCQs)	1	A			
13	Some basic concepts of chemistry	(MCQs)	1	AN, E&C			
14	Structure of atom	(MCQs)	1	AN, E&C			
15	Chemical Bonding	(MCQs)	1	AN, E&C			
16	Classification of elements	(MCQs)	1	AN, E&C			
17	Classification of elements	SA-I	2	R & U			
18	Chemical Bonding	SA-I	2	R &U			
19	Classification of elements	SA-I	2	R &U			
20	Some basic concepts of chemistry	SA-I	2	AN, E&C			
21	Chemical Bonding	SA-I	2	Α			
22	Thermodynamics	SA-II	3	AN, E&C			
23	Chemical Bonding	SA-II	3	A			
24	Structure of atom	SA-II	3	AN, E&C			
25	Some basic concepts of chemistry	SA-II	3	AN, E&C			
26	Classification of elements	SA-II	3	A			
27	Thermodynamics	SA-II	3	R & U			
28	Classification of elements	SA-II	3	AN, E&C			
29	Thermodynamics	CBQ	4	A			
30	Structure of atom	CBQ	4	R & U			
31	Some basic concepts of chemistry	LA	5	А			
32	Chemical Bonding	LA	5	R & U			
33	Structure of atom	LA	5	AN, E&C			

		AININ	EXURE -	
Half-Yearly Exam., SUBJECT CHEMISTRY CLASS :XI				
Qn. No.	MARKING SCHEME Value Points	Marks Allotted	PAGE NO.OF NCERT /TEXT BOOK	
	SECTION-A	1		
1.	(d) 12 g He	1	Pg-18	
2.	(b) 2.5h/π	1	Pg- 56	
3.	(c) 46	1	Pg-23	
1.	(b) Heisenberg's uncertainty principle	1	Pg-51	
5.	(c) 34.52	1	Pg-19	
ó .	(a) 6.63×10^{-24} Kg m sec ⁻¹	1	Pg-73	
7	(d) Heat capacity	1	Pg-180	
3.).	(b) $H_2O>HF>NH_3$ (a) 2 unpaired electrons in π_b MO	1 1	Pg- 121 Pg-127	
10.	(a) 2 unpared electrons in n_b into	1	Pg-105	
10. 11.	(b) -46.2kJ	1	Pg-160	
2.	(b) sp, sp ² and sp ³	1	Exmp-39	
3.	(c) Assertion is correct, reason is incorrect	1	Pg-17	
14.	(a) Both (A) and (R) are true and (R) is correct explanation of A.	1	Pg-25	
15.	(c) Assertion is correct, reason is incorrect	1	Pg-108	
16.	(b) Both A and R are true but R is not the correct explanation of A.	1	Pg-88	
	SECTION-B			
17.	118- Ununoctium	1	Pg-80	
	Position in the modern periodic table: 7 th period and 18 th group.	1/2 + 1/2		
8.	(a) BF ₃ is symmetrical molecule. Hence individual dipolemoments cancel out and net dipolemoment become zero.	1	Pg-112	
	(b) Due to presence of one lone pair of electrons on nitrogen and three bond pairs, the geometry of NH ₃ is tetrahedral and shape is trigonal pyramidal.	1		
	OR	1		
	 (a) It is due to resonance. (b) It is due to lp-lp repulsion in H₂O molecule which overcomes lp-bp repulsion in case of NH_{3.} 	1		
19.	$Na_2O + H_2O \rightarrow 2NaOH(Basic)$	1 1	Pg-91	
	$Cl_2O_7 + H_2O \rightarrow 2HClO_4(Acidic)$			
20.	$2H_2 + O_2 \rightarrow 2H_2O$ $4g 32g 36g$ According to the equation, 4g H ₂ requires 32g O ₂ So, 3g H ₂ requires O ₂ = $\frac{32 \times 3}{4} = 24g O_2$		Pg-20	
	 Here 3g H₂ is mixed with 29g of O₂. (i) All H₂ will react. Hence, H₂ is the limiting reagent. 	1		
	(ii)According to the equation, 4g H ₂ gives 36g H ₂ O. Hence,3g H ₂ will give= $\frac{36\times3}{4}$ =27g H ₂ O	1		

21.	No. of sigma bond=9,	1	Pg-120
	No of Pie bond=3	1	
	SECTION-C	1	1
22.	$\begin{array}{l} CH_{3}OH(l) + 3/2O_{2}\left(g\right) \longrightarrow CO_{2}\left(g\right) + 2H_{2}O \qquad \Delta_{r}H^{\Theta} = -726kJmol^{-1} - (i) \\ C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}, \qquad \Delta_{c}H^{\Theta} = -393 \text{ kJ mol}^{-1} - (ii) \\ H_{2(g)} + 1/2O_{2(g)} \longrightarrow H_{2}O_{(l)}, \qquad \Delta_{f}H^{\Theta} = -286 \text{ kJmol}^{-1} - (iii) \\ \end{array}$ The desired equation is		Pg-180
	C _(s) +2H _{2(g)} +l/2O _{2(g)} → CH ₃ OH _(l) ; $\Delta_{f}H^{\Theta} = \pm$? (iv) Multiply eqn. (iii) by 2 and add to eqn. (ii) C _(s) +2H _{2(g)} + 2O _{2(g)} → CO _{2(g)} +2H ₂ O _(l) $\Delta H = -(393 + 522) = -965 \text{ kJmol}^{-1}(v)$	1⁄2	
	Subtract eqn. (v) from eqn. (i) $CH_3OH_{(1)}+3/2O_{2(g)} \longrightarrow CO_{2(g)}+2H_2O_{(1)}$	1	
	: $\Delta H = -726 \text{ kJ mol}^{-1}$ (vi) Subtract eqn. (vi) from eqn. (v): $C(s) + 2H_{2(l)} + 1/2O_{2(g)} \longrightarrow CH_3OH_{(l)};$	1⁄2	
	$\Delta_{\rm f} \mathbf{H}^{\Theta} = -239 \mathbf{kJ} \mathrm{mol}^{-1}$	1	
23.	 (a) The bond dipoles of two C=O. bonds cancel the moment of each other. Whereas, H₂O molecule has a net dipole moment (1.84 D). H₂O molecule has a bent structure because here the O—H bonds are oriented at an angle of 104.5° and do not cancel the bond moments of each other. 	1	Pg- 137
	 (b) The hybridization of B changes from sp² to sp³ whereas the hybridization of N remains same i.e sp³. (c) The geometry of SF₄ molecule is a "see-saw." 	1	
24.	(a) F (a) Power of bulb, P = 25 Watt = 25 Js ⁻¹ Energy of one photon, E = hv = hc/ λ Substituting the values in the given expression of E:	1/2	Pg- 53,47,5
	$E = \frac{\left(6.626 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{\left(0.57 \times 10^{-6}\right)} = 34.87 \times 10^{-20} \text{ J}$ E = 34.87 × 10 ⁻²⁰ J Rate of emission of quanta per second	1⁄2	
	$=\frac{25}{34.87\times10^{-20}}=7.169\times10^{19} \text{ s}^{-1}$	1	
	(b) Correct statement .	1	

25. N	Iolecular ma	uss = 98.9	96						
	Element	%	Atomic mass	Relative no. of moles	Simplest molar ratio	Simplest whole no.ratio			Pg-51
	C	24.27	12	$\frac{24.27}{12}$ = 2.02	2.02 $\overline{2.02}$ = 1	1		1	
	Н	4.07	1	$\frac{4.07}{1}$ = 4.07	$ \frac{4.07}{2.02} = 2 $	2			
	<u>C1</u>	71.65	35.5	$\frac{71.65}{35.5}$ = 2.02	2.02 2.02 = 1	1			
S	imple molar	ratio=1:	2:1 for C:		1				
	Empirical For Empirical ma		CH ₂ Cl					1	
		rmula = r	n × (Empiri	s=98.96/49.5= ical formula) $c=C_2H_4Cl_2$: 2			1	
(i re (i a w h p	eluctant to ga nthalpy. (iii) Hydroger lso shows th vith two com as made it di osition of hy iv) This is du	table con ain an elo n has pro e propert pletely d ifficult for vdrogen i ue to the	nfiguration ectron. So, perties sin ties of grou lifferent gr or scientist n the mode increase in	onfiguration since it has ha nitrogen has sl nilar to the grou up 17 elements oups of elements s to place it in p ern periodic tak nuclear charge electron pair ca	lightly positive of the positive (Halogens). In the sin the mode particular group ble is not fixe e and decreas	e electron ga (alkali meta Hydrogen's s lern periodic oup and hence d. e in atomic s	ain ls) and it imilarity table e the iize,	1x3	Pg-85, 87
F 2	a) for the given A + B→C As per the G			ation:					Pg-184
∆ A S	$G = \Delta H - T_A$	Δ S	-	rium, ΔG=0 ;				1⁄2	
T F	hus, reaction or the reaction	n will be on to be	in a state o spontaneou	ol ⁻¹) = 2000 K of equilibrium a us, ΔG must be ould be greater	at 2000 K. e negative. He		given	¹ ⁄2 1	
Δ	-			rgy is released opy decreases			orm	1	

28.	(a) (i) All the given species contain same number of electrons (10). Hence, they	1	Pg-96
	are isoelectronic species. (ii) The increasing order of ionic radii is Al ³⁺ <mg<sup>2+<na<sup>+<f<sup>-<o<sup>2-<n<sup>3-</n<sup></o<sup></f<sup></na<sup></mg<sup>	1	
	(b) Because the number of protons are more than number of electrons and hence	-	
	effective nuclear charge increases.	1	
	SECTION-D		
29	(a) $C_P - C_V = R$	1	Pg-
	 (b) The amount of heat required to raise the temperature of 1 mole of a substance by 1 degree celcius. (c) q = McΔT 	1	161,163
	$= 1000 \times 4.18 \times 20$	1/2	
	=83600 J	1⁄2	
	$=\frac{83600}{1000}$	1	
	= 83.6 KJ	1	
	OR		
	$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$ For the above reaction $\Delta n^{(g)} = 2-(2+1) = -1$		
	$\Delta U = \Delta H - \Delta n^{(g)} RT$	1/2	
	=-92.38-(-1)×(8.314×298)	$\frac{1}{2}$	
	$=-92.38+(8.314\times298)$, <u> </u>	
20	=-92.38+4.95=-87.43kJ	1	D 07
30	(a) $\lambda = h/mv$	1 1⁄2	Pg-27
	(b) No, Because of large masses, the wavelength	72	
	associated with macroscopic object becomes so	1/2	
	short that it can not be detected.	1/2	
	(c) $\lambda = h / (2mKE)^{1/2}$ 6.626×10 ⁻³⁴	$\frac{72}{1/2}$	
	$=\frac{1}{\sqrt{2\times9.1\times10^{-31}\times3\times10^{-25}}}$	1	
	$=1.2 \times 10^{-7} m$ OR		
	$P = \frac{h}{\lambda}$	1/2	
	so, here we have to use formula	1/2	
	$\frac{P_A}{P_B} = \frac{\lambda_B}{\lambda_A}$		
	Given, $P_B = \frac{P_A}{2}$		
	and $\lambda_A = 5 \times 10^{-8} m$		
	$\frac{P_A}{\text{SO}, \frac{P_A}{P_A/2}} = \frac{\lambda_B}{5 \times 10^{-8}}$	1⁄2	
	$\lambda = 10^{-7} \text{m}$	1/2	
	hence, wavelength of B is 10 ⁻⁷ m	72	
	SECTION-E		
31	(a) Molar mass of glucose $(C_6H_{12}O_6)$	1x5	Pg-
	$= 12 \times 6 + 1 \times 12 + 16 \times 6 = 180$		17,19,15
	1.12年2月1日、1月1日、日本市、日本市、日本市、日本市、日本市、日本市、日本市、日本市、日本市、日本		
	Molarity = $\frac{\text{conc. in gL}^{-1}}{\text{Molar mass}} = \frac{0.90 \text{ gL}^{-1}}{180 \text{ g mol}^{-1}} = 0.005 \text{ M}$		
	(b) $CaCO_3 \rightarrow CaO + CO_2$		
	10.0 g 5.6 g 2.24L=4.4 g		
	Since, mass of reactant = Mass of product		

	So, the law of conservation of mass is obeyed.		
	so, the law of conservation of mass is obeyed.		
	(c) 0.5 mol Na ₂ CO ₃ means the quantity of weight of Na ₂ CO ₃ present whereas 0.5M		
	Na ₂ CO ₃ means 0.5 moles of Na ₂ CO ₃ present in 1 L solution. it is a measure of quantity of Na ₂ CO ₃ in the solution		
	(d) Number of moles of solvent=1000/18=55.56 mol		
	Mole fraction of the solute $=\frac{2.5}{2.5+55.56}=0.043$		
	(e) $CaCO_3+2HCl \rightarrow CaCl_2+H_2O+CO_2$ According		
	to the balanced reaction 100 g of CaCO ₃ requires 2×36.5=73 g of HCl 50 g CaCO ₃		
	requires:= $73/100 \times 50=36.5$ g HCl		
	(f) 14 gm of Nitrogen has higher volume		
32.	(a)The octet rule states that atoms tend to form compounds in ways that give	1	Pg-
	them eight valence electrons and thus the electronic configuration of a noble gas.		135,105,1
	Limitations:(any two) (i) Incomplete octet: In certain molecules such as BeH ₂ , BeCl ₂ , BH ₃ , BF ₃ , the		29
	central atom has less than 8 electrons in its valence shell, yet the molecule is		
	stable.		
	(ii) Expanded octet: In certain molecules such as PF5, SF6, IF7, H ₂ SO ₄ , the central	1.1	
	atom has more than 8 valence electrons, yet the molecule is stable. (iii) Odd electron species: In certain molecules such as NO ₂ , the central atom has	1+1	
	one odd electron.		
	(iv) Xe being a noble gas also forms compounds like XeF ₄ , XeF ₆		
	(v) It failed to explain the relative stability of molecules.(vi) The shape of the molecule is not predicted by the octet rule.		
	(vi) The shape of the molecule is not predicted by the octet rule.		
	(b) Lewis structure of O_3 is		
		1/2	
	1 / 1 $3O O:$	1⁄2	
	Formal charge on $O(1) = 6 - 4 - \frac{1}{2} (4) = 0$	1/2	
	Formal charge on O(2) = $6 - 2 - \frac{1}{2}(6) = +1$	1/2	
	Formal charge on O(3) = $6 - 6 - \frac{1}{2}$ (2) = -1 .		
		1/2	
	$OR (a) N_2: \sigma 1s^2, \sigma * 1s^2, \sigma 2s^2, \sigma * 2s^2, \pi 2p_x^2 = \pi 2p_y^2, \sigma * 2p_z^2$		
	(a) N ₂ : $\sigma_1 s^2, \sigma_2 s^2, \sigma_3 s^2, \sigma_4 2 s^2, \pi_2 p_x^2 = \pi_2 p_y^2, \sigma_4 2 p_z^2$ Bond Order = $\frac{N_b - N_a}{2} = \frac{10 - 4}{2} = 3$	1⁄2	
	O ₂ : $\sigma 1s^2$, $\sigma * 1s^2$, $\sigma 2s^2$, $\sigma * 2s^2$, $\sigma * 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\pi * 2p_x^1 = \pi * 2p_y^1$ Bond Order = $\frac{N_b - N_a}{2} = \frac{10 - 6}{2} = 2$	1/2	
	Bond Order = $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ $O_2^+: \sigma 1s^2, \sigma * 1s^2, \sigma 2s^2, \sigma * 2s^2, \sigma * 2p_z^2, \pi 2p_x^2 = \pi 2p_y^2, \pi * 2p_x^1$		
	Bond Order = $\frac{N_b - N_a}{2} = \frac{10 - 5}{2} = 2.5$	1/2	
	Bond Order = $\frac{1}{2} = \frac{1}{2} = 2.5$ $O_2^-: \sigma 1s^2, \sigma * 1s^2, \sigma 2s^2, \sigma * 2s^2, \sigma * 2p_z^2, \pi 2p_x^2 = \pi 2p_y^2, \pi * 2p_x^2 = \pi * 2p_y^1$, 2	
	Bond Order = $\frac{N_b - N_a}{2} = \frac{10 - 7}{2} = 1.5$		
	Increasing order of stability $O_2^- < O_2 < O_2^+ < N_2$	1	
	(b) Any two difference. (b) Any two difference.	2	

33.	(a) (i)n=5	1	Pg-
	(ii) $\overset{z}{\underset{d_{z^2}}{\overset{d_{z^2}}}{\overset{d_{z^2}}}{\overset{d_{z^2}}}{\overset{d_{z^2}}}{\overset{d_{z^2}}}{\overset{d_{z^2}}}{\overset{d_{z^2}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	1	70,41,70, 61,59
	 (b) (i)1s²2s²2p⁶3s²3p⁶ Number of unpaired electrons=0 (ii) 1s²2s²2p⁶3s²3p⁶4s²3d³ Number of unpaired electrons=3 	1+1	
	$(c)\frac{(n_2-n_1)(n_2-n_1+1)}{2} = \frac{(7-2)(7-2+1)}{2} = \frac{5\times 6}{2} = 15 \ lines$	1⁄2 1⁄2	
	OR		
	(a) Energy for hydrogen electron present in a particular energy shell,	1	
	$E_n = -\frac{-2.18 \times 10^{-18}}{n^2} J \ atom^{-1}$	1	
	Ionisation energy for hydrogen electron present in orbit n = 5 is IE ₅ = $E_{\infty} - E_5 = 0 - \left(\frac{-2.18 \times 10^{-18}}{25}\right) J \ atom^{-1} = 8.72 \times 10^{-20} J \ atom^{-1}$		
	 (b) (i) n-l-1 = 3-1-1 =1 (ii) l = 2 (c) Electron bearing quantum numbers:n=4, l=3 will have the lower energy because of lower n value making it closer to nucleus 	1+1 1	