Roll No.	

Candidates must write the Set No. on the title page of the answer book.

DAV PUBLIC SCHOOLS, ODISHA ZONE - I

PERIODIC TEST -2, 2017-18

- Check that this question paper contains 4 printed pages.
- Set number given on the right hand side of the question paper should be written on the title page of the answer book by the candidate.
- Check that this question paper contains 30 questions.
- Write down the Serial Number of the question before attempting it.
- 15 minutes cooling time has been allotted to read this question paper only and do not write any answer on the answer book during this period.

CLASS-IX

SUB: MATHEMATICS

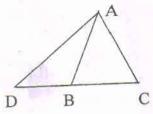
Time: 3 Hours

Maximum Marks: 80

General Instructions:

- All questions are compulsory.
- There are 4 sections. Section A carries 6 questions of 1 mark each.
- Section B carries 6 questions of 2 marks each.
- Section C carries 10 questions of 3 marks each.
- Section D carries 8 questions of 4 marks each.

Section: A


 $(1 \times 6 = 6)$

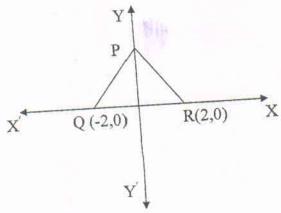
- Insert an irrational number between $\frac{1}{2}$ and $\frac{3}{5}$. 1.
- Find the remainder when $x^4 + x^3 2x^2 + x + 1$ is divided by (x 1). 2. 3.
- How many planes can be made to pass through two distinct points? 4.
- Find the area of the triangle formed by joining the points (0,0), (2,0) & (0,-1). 5.
- In two triangles ABC & DEF, it is given that $\angle A = \angle D$, AC = DF & BC = EF. Check whether the given triangles are congruent or not. 6.
- Find the area of an equilateral triangle whose measure of its side is 4cm.

41/1

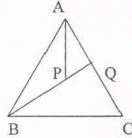
7. If x + y = 12 & xy = 27, find $x^3 + y^3$.

- 8. Plot the points A(1,0), B(4,0) & C(1,3). Find the coordinate of point D such that ABCD is a square.
- 9. Find the distance between (-3,2) & (-3,6).
- 10. If a point C lies between two points A and B on AB such that AC=BC, use Euclid's Axiom to prove that $AC=\frac{1}{2}AB$
- 11. Diagonal AC of a quadrilateral ABCD bisects the angles A and C. Prove that AB=AD.
- 12. In the given figure, AB=AC & D is any point on CB produced. Show that AD>AB.

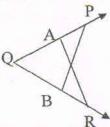
Section: C


 $(3 \times 10 = 30)$

- 13. Without actual division, prove that $2x^4 5x^3 + 2x^2 x + 2$ is exactly divisible by $x^2 3x + 2$.
- 14. Find the coordinate of the point
 - a. Which lies on both the axes?
 - b. Whose abscissa is -4 and lies on X-axis?
 - c. Which is 5 units far from X-axis & 2 units far from Y-axis and lies on 1st quadrant?
- 15. Plot the points A (4,0) & B(0,4). Join A,B to origin O. Find the area of triangle OAB.
- 16. The side BC of \triangle ABC is produced to D. The bisector of \angle A meets BC in L. Prove that \angle ABC+ \angle ACD =2 \angle ALC
- Find the measure of an angle, if eight times its complement is 20⁰ less than three times its supplement.
- 18. Prove that sum of any two sides of a triangle is greater than twice the median with respect to the third side.
- 19. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD. Show that $\angle A \ge \angle C$ and $\angle B \ge \angle D$


- Two sides AB, BC & median AM of \triangle ABC are respectively equal to sides PQ, QR & median PN of \triangle PQR. Show that \triangle ABC \cong \triangle PQR. 20.
- Find the area of an equilateral triangle of side measure 'a' units by using Heron's 21.
- In a rectangular field of dimension 50m x 30m, a triangular park is constructed. If the dimensions of the park are 14m, 15m & 13m, find the area of the remaining 22. $(4 \times 8 = 32)$ field.

Section: D


- Find the value of a and b if $\frac{7+\sqrt{5}}{7-\sqrt{5}} \frac{7-\sqrt{5}}{7+\sqrt{5}} = a+b\sqrt{5}$ 23.
- In the given figure, PQR is an equilateral triangle with coordinates Q & R as (-2,0) &(2,0) respectively. Find the coordinate of the vertex of point P. 24.

- For spreading the message "Save Environment, Save Future", a rally was 25. organised by some students of a school. They were given triangular cardboard pieces ABC which they divide into 2 parts by drawing the angle bisectors BO & CO of base angle B and C. Prove that $\angle BOC = 90^{\circ} + \frac{1}{2} \angle A$, what is the benefits of these types of rallies?
- BE and CF are two equal altitudes of a ΔABC. Using RHS congruence rule, 26. prove that the triangle is isosceles.
- The sides AB, AC of a \(\Delta ABC \) are equal and 'P' is any point within the triangle 27. on the bisector of ∠BAC. BP produced meets AC in 'Q'. Prove that BP > PQ.

28. In the given figure, PQ=QR, & $\angle PAR=\angle RBP$. Prove that AR=PB.

- 29. A field is in the shape of a trapezium, its parallel sides are 25m & 10m and the non-parallel sides are 14m & 13m. Find the area of the field.
- 30. Sides of a triangle are in the ratio of 12:17:25 and its perimeter is 540cm. Find its area.
