
270

MORE ON DATABASES AND SQL
Learning Objectives

•

•

•

•

•

•

8Puzzle

After studying this lesson the students will be able to:

Define the terms:

(i) Group (Aggregate) functions, Constraints

(ii) Cartesian Product, Join, Referential Integrity, Foreign Key.

Write queries using aggregate functions and GROUP BY clause.

Access data from multiple tables

Create tables with PRIMARY KEY and NOT NULL constraints

Add a constraint to a table, remove a constraint from a table, modify a

column of a table using ALTER TABLE command.

Delete a table using DROP TABLE.

In the previous class, you have learnt some database concepts and SQL commands.

You have also learnt how to create databases and tables within databases and how

to access data from a table using various clauses of SELECT command. In this

chapter you shall learn some more clauses and functions in SQL to access data

from a table and how to access data from multiple tables of a database.

It was Iftar party in Lucknow that Mr. David met Mr. Naqvi. They became friends and

exchanged their phone numbers. After a few days, Mr. David rang up and invited Mr. Naqvi

for New Year party at his house and gave him his house number as follows:

"I live in a long street. Numbered on the side of my house are the houses one, two, three

and so on. All the numbers on one side of my house add up to exactly the same as all the

PTA EH R

C 9

271

MORE ON DATABASES AND SQL

numbers on the other side of my house. I know there are more than thirty houses on that

side of the street, but not so many as 50."

With this information, Mr. Naqvi was able to find Mr. David's house number. Can you also

find?

Such situations are faced by the developers of RDBMS software where they have to think

of retrieval of data from multiple tables satisfying some specified conditions.

Let us now move ahead with SQL and more database concepts.

Ms. Shabana Akhtar is in-charge of computer department in a Shoe factory. She has

created a database 'Shoes' with the following tables:

(To store the information about various types of shoes made in the factory)

+--------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+-------+
code	char(4)	NO	PRI	NULL	
name	varchar(20)	YES		NULL	
type	varchar(10)	YES		NULL	
size	int(2)	YES		NULL	
cost	decimal(6,2)	YES		NULL	
margin	decimal(4,2)	YES		NULL	
Qty	int(4)	YES		NULL	

+--------+--------------+------+-----+---------+-------+

(To store the data of customers)

+-----------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+-------------+------+-----+---------+-------+
cust_Code	char(4)	NO	PRI	NULL	
name	varchar(30)	YES		NULL	
address	varchar(50)	YES		NULL	
phone	varchar(30)	YES		NULL	
category	char(1)	YES		NULL	
+-----------+-------------+------+-----+---------+-------+

SHOES

CUSTOMERS

272

MORE ON DATABASES AND SQL

ORDERS

(To store the data of orders placed by customers)

+-------------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+---------+------+-----+---------+-------+
order_no	int(5)	NO	PRI	NULL	
cust_code	char(4)	YES		NULL	
Shoe_Code	char(4)	YES		NULL	
order_qty	int(4)	YES		NULL	
order_date	date	YES		NULL	
target_date	date	YES		NULL	
+-------------+---------+------+-----+---------+-------+

Sample data stored in these tables is given below:

+------+----------------+--------+------+--------+--------+------+
| Code | Name | type | size | cost | margin | Qty |
+------+----------------+--------+------+--------+--------+------+
1001	School Canvas	School	6	132.50	2.00	1200
1002	School Canvas	School	7	135.50	2.00	800
1003	School Canvas	School	8	140.75	2.00	600
1011	School Leather	School	6	232.50	2.00	2200
1012	School Leather	School	7	270.00	2.00	1280
1013	School Leather	School	8	320.75	NULL	1100
1101	Galaxy	Office	7	640.00	3.00	200
1102	Galaxy	Office	8	712.00	3.00	500
1103	Galaxy	Office	9	720.00	3.00	400
1201	Tracker	Sports	6	700.00	NULL	280
1202	Tracker	Sports	7	745.25	3.50	NULL
1203	Tracker	Sports	8	800.50	3.50	600
1204	Tracker	Sports	9	843.00	NULL	860
+------+----------------+--------+------+--------+--------+------+

SHOES

273

MORE ON DATABASES AND SQL

CUSTOMERS

ORDERS

Aggregate Functions

+-----------+----------------+------------------------+--------------------+----------+
| Cust_Code | name | address | Phone | Category |
+-----------+----------------+------------------------+--------------------+----------+
C001	Novelty Shoes	Raja Nagar, Bhopal	4543556, 97878989	A
C002	Aaram Footwear	31, Mangal Bazar, Agra	NULL	B
C003	Foot Comfort	New Market, Saharanpur	51917142, 76877888	B
C004	Pooja Shoes	Janak Puri, New Delhi	61345432, 98178989	A
C005	Dev Shoes	Mohan Nagar, Ghaziabad	NULL	C
+-----------+----------------+------------------------+--------------------+----------+

+----------+-----------+-----------+-----------+------------+-------------+
| order_no | cust_code | Shoe_Code | order_qty | order_date | target_date |
+----------+-----------+-----------+-----------+------------+-------------+
1	C001	1001	200	2008-12-10	2008-12-15
2	C001	1002	200	2008-12-10	2008-12-15
3	C003	1011	150	2009-01-08	2009-01-13
4	C002	1012	250	2009-01-08	2009-01-13
5	C001	1011	400	2009-01-10	2009-01-15
6	C002	1101	300	2009-01-10	2009-01-15
7	C004	1201	200	2009-01-10	2009-01-15
8	C005	1102	350	2009-01-10	2009-01-15
9	C001	1103	225	2009-01-13	2009-01-18
10	C002	1203	200	2009-01-14	2009-01-19
+----------+-----------+-----------+-----------+------------+-------------+

Let us now see how this database helps Ms. Akhtar in generating various reports quickly.

In class XI we studied about single row functions available in SQL. A single row function

works on a single value. SQL also provides us multiple row functions. A multiple row

function works on multiple values. These functions are called aggregate functions or

group functions. These functions are:

1 MAX() Returns the MAXIMUM of the values under the specified

column/expression.

2 MIN() Returns the MINIMUM of the values under the specified

column/expression.

S.No. Function Purpose

274

MORE ON DATABASES AND SQL

3 AVG() Returns the AVERAGE of the values under the specified

column/expression.

4 SUM() Returns the SUM of the values under the specified

column/expression.

5 COUNT() Returns the COUNT of the number of values under the specified

column/expression.

MAX() function is used to find the highest value of any column or any expression based on

a column. MAX() takes one argument which can be any column name or a valid expression

involving a column name. e.g.,

MAX() :

Purpose Statement Output

To find the highest

cost of any type of

shoe in the factory.

SELECT MAX(cost)

FROM shoes;

+-----------+
| MAX(cost) |
+-----------+
| 843.00 |
+-----------+

To find the highest

cost of any shoe of

type 'School'.

SELECT MAX(cost)

FROM shoes

WHERE type =

'School';

+-----------+
| MAX(cost) |
+-----------+
| 320.75 |
+-----------+

To find the highest

selling price of any

type of shoe.

SELECT

MAX(cost+cost*margin/

100)

FROM shoes;

+---------------------------+
| MAX(cost+cost*margin/100) |
+---------------------------+
| 828.517500000 |
+---------------------------+

To find the highest

selling price of any

type of shoe

rounded to 2

decimal places.

SELECT

ROUND(MAX(cost+cost*mar

gin/100),2)

 AS "Max. SP" FROM

shoes;

+---------+
| Max. SP |
+---------+
| 733.36 |
+---------+

275

MORE ON DATABASES AND SQL

MIN() :

MIN() function is used to find the lowest value of any column or an expression based on a

column. MIN() takes one argument which can be any column name or a valid expression

involving a column name. e.g.,

To find the highest

selling price of any

type of shoe

rounded to 2

decimal places.

SELECT

ROUND(MAX(cost+cost*mar

gin/100),2)

 AS "Max. SP" FROM

shoes;

+---------+
| Max. SP |
+---------+
| 733.36 |
+---------+

Purpose Statement Output

To find the lowest

cost of any type of

shoe in the factory.

SELECT MIN(cost)

FROM shoes;

+-----------+
| MIN(cost) |
+-----------+
| 843.00 |
+-----------+

To find the lowest

cost of any shoe of

type 'School'.

SELECT MIN(cost)

FROM shoes

WHERE type =

'School';

+-----------+
| MIN(cost) |
+-----------+
| 320.75 |
+-----------+

To find the lowest

selling price of any

type of shoe

rounded to 2

decimal places.

SELECT

ROUND(MIN(cost+cost*mar

gin/100),2)

AS "Min. SP" FROM

shoes;

+---------+
| Min. SP |
+---------+
| 135.15 |
+---------+

276

MORE ON DATABASES AND SQL

AVG() :

AVG() function is used to find the average value of any column or an expression based on a

column. AVG() takes one argument which can be any column name or a valid expression

involving a column name. Here we have a limitation: the argument of AVG() function can

be of numeric (int/decimal) type only. Averages of String and Date type data are not

defined. E.g.,

Purpose Statement Output

To find the average

margin from shoes

table.

SELECT AVG(margin)

FROM shoes;

+-------------+
| AVG(margin) |
+-------------+
| 2.600000 |
+-------------+

To find the average

cost from the shoes

table.

SELECT AVG(cost) FROM

shoes;

+------------+
| AVG(cost) |
+------------+
| 491.750000 |
+------------+

To find the average

quantity in stock

for the shoes of

type Sports.

SELECT AVG(qty)

FROM shoes

WHERE type =

'Sports';

+----------+
| AVG(qty) |
+----------+
| 580.0000 |
+----------+

277

MORE ON DATABASES AND SQL

SUM() :

SUM() function is used to find the total value of any column or an expression based on a

column. SUM() also takes one argument which can be any column name or a valid

expression involving a column name. Like AVG(), the argument of SUM() function can be

of numeric (int/decimal) type only. Sums of String and Date type data are not defined.

e.g.,

Purpose Statement Output

To find the total

quantity present in

the stock

SELECT SUM(Qty) FROM

Shoes;

+----------+
| SUM(Qty) |
+----------+
| 10020 |
+----------+

To find the total

order quantity

SELECT SUM(order_qty)

FROM orders;

+----------------+
| SUM(order_qty) |
+----------------+
| 2475 |
+----------------+

To find the the

total value

(Quanitity x Cost)

of Shoes of type

'Office' present in

the inventory

SELECT SUM(cost*qty)

FROM shoes

WHERE type =

'Office';

+---------------+
| SUM(cost*qty) |
+---------------+
| 772000.00 |
+---------------+

278

MORE ON DATABASES AND SQL

COUNT() :

COUNT() function is used to count the number of values in a column. COUNT() takes one

argument which can be any column name, an expression based on a column, or an asterisk

(*). When the argument is a column name or an expression based on a column, COUNT()

returns the number of non-NULL values in that column. If the argument is a *, then

COUNT() counts the total number of rows satisfying the condition, if any, in the table.

e.g.,

Purpose Statement Output

To count the total

number of records

in the table Shoes.

SELECT COUNT(*) FROM

shoes;

+----------+
| COUNT(*) |
+----------+
| 13 |
+----------+

To count the

different types of

shoes that the

factory produces

SELECT COUNT(distinct

type)

FROM shoes;

+----------------------+
| COUNT(distinct type) |
+----------------------+
| 3 |
+----------------------+

To count the

records for which

the margin is

greater than 2.00

SELECT COUNT(margin)

FROM shoes

WHERE margin > 2;

+---------------+
| COUNT(margin) |
+---------------+
| 5 |
+---------------+

To count the

number of

customers in 'A'

category

SELECT COUNT(*)

FROM customers

WHERE category ='A';

+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+

To count the

number of orders of

quantity more than

300

SELECT COUNT(*)

FROM orders

WHERE order_qty >

300;

+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+

279

MORE ON DATABASES AND SQL

Aggregate functions and NULL values:

None of the aggregate functions takes NULL into consideration. NULL is simply ignored by

all the aggregate functions. For example, the statement:

SELECT COUNT(*) FROM shoes;

produces the following output:

+----------+
| COUNT(*) |
+----------+
| 13 |
+----------+

Indicating that there are 13 records in the Shoes table. Whereas the query:

SELECT COUNT(margin) FROM shoes;

produces the output:

+---------------+
| COUNT(margin) |
+---------------+
| 10 |
+---------------+

This output indicates that there are 10 values in the margin column of Shoes table. This

means there are 3 (13-10) NULLs in the margin column.

This feature of aggregate functions ensures that NULLs don't play any role in actual

calculations. For example, the following statement:

SELECT AVG(margin) FROM shoes;

produces the output:

+-------------+
| AVG(margin) |
+-------------+
| 2.600000 |
+-------------+

The average margin has been calculated by adding all the 10 non NULL values from the

margin column and dividing the sum by 10 and not by 13.

280

MORE ON DATABASES AND SQL

Know more!

GROUP BY

•

•

•

There are some more aggregate functions available in MySQL. Try to find out what

are those. Also try to use them.

In practical applications many times there arises a need to get reports based on some

groups of data. These groups are based on some column values. For example,

The management of the shoe factory may want to know what is the total

quantity of shoes of various types. i.e., what is the total quantity of shoes of

type School, Office, and Sports each.

The management may also want to know what is the maximum, minimum, and

average margin of each type of shoes.

It may also be required to find the total number of customers in each category.

There are many such requirements.

SQL provides GROUP BY clause to handle all such requirements.

For the above three situations, the statements with GROUP BY clause are given below:

In the first situation we want MySQL to divide all the records of shoes table into different

groups based on their type (GROUP BY type) and for each group it should display the type

and the corresponding total quantity (SELECT type, SUM(qty)). So the complete

statement to do this is:

SELECT type, SUM(qty) FROM shoes

GROUP BY type;

and the corresponding output is:

+--------+----------+
| type | SUM(qty) |
+--------+----------+
Office	1100
School	7180
Sports	1740
+--------+----------+

G1

281

MORE ON DATABASES AND SQL

Similarly, for the second situation the statement is:

SELECT type, MIN(margin), MAX(margin), AVG(margin)

FROM shoes GROUP BY type;

and the corresponding output is:

+--------+-------------+-------------+-------------+
| type | MIN(margin) | MAX(margin) | AVG(margin) |
+--------+-------------+-------------+-------------+
Office	3.00	3.00	3.000000
School	2.00	2.00	2.000000
Sports	3.50	3.50	3.500000
+--------+-------------+-------------+-------------+

In the third situation we want MySQL to divide all the records of Customers table into

different groups based on the their Category (GROUP BY Category) and for each group it

should display the Category and the corresponding number of records (SELECT Category,

COUNT(*)). So the complete statement to do this is:

SELECT category, COUNT(*) FROM customers GROUP BY category;

+----------+----------+
| category | COUNT(*) |
+----------+----------+
A	2
B	2
C	1
+----------+----------+

Let us have some more examples.

Consider the following statement:

SELECT cust_code, SUM(order_qty)

 FROM orders GROUP BY cust_code;

G2

G3

282

MORE ON DATABASES AND SQL

This statement produces the following output. Try to explain this this output.

+-----------+----------------+
| cust_code | SUM(order_qty) |
+-----------+----------------+
C001	1025
C002	750
C003	150
C004	200
C005	350
+-----------+----------------+

Do the same for the following statement also:

SELECT shoe_code, SUM(order_qty)

FROM orders GROUP BY shoe_code;

+-----------+----------------+
| shoe_code | SUM(order_qty) |
+-----------+----------------+
1001	200
1002	200
1011	550
1012	250
1101	300
1102	350
1103	225
1201	200
1203	200
+-----------+----------------+

If you carefully observe these examples, you will find that GROUP BY is always used in

conjunction with some aggregate function(s). A SELECT command with GROUP BY clause

has a column name and one or more aggregate functions which are applied on that

column and grouping is also done on this column only.

Sometimes we do not want to see the whole output produced by a statement with GROUP

BY clause. We want to see the output only for those groups which satisfy some condition.

It means we want to put some condition on individual groups (and not on individual

records). A condition on groups is applied by HAVING clause. As an example reconsider the

HAVING :

283

MORE ON DATABASES AND SQL

statement G1 discussed above. The statement produced three records in the output - one

for each group. Suppose, we are interested in viewing only those groups' output for which

the total quantity is more than 1500 (SUM(Qty) > 1500). As this condition is applicable to

groups and not to individual rows, we use HAVING clause as shown below:

 SELECT type, SUM(qty) FROM shoes

GROUP BY type HAVING SUM(qty) > 1500;

+--------+----------+
| type | SUM(qty) |
+--------+----------+
| School | 7180 |
| Sports | 1740 |
+--------+----------+

Now suppose for G2 we want the report only for those types for which the average margin

is more than 2. For this, following is the statement and the corresponding output:

 SELECT type, SUM(qty) FROM shoes

GROUP BY type HAVING AVG(margin) >2;

+--------+----------+
| type | SUM(qty) |
+--------+----------+
| Office | 1100 |
| Sports | 1740 |
+--------+----------+

In these statements if we try to put the condition using WHERE instead of HAVING, we

shall get an error. Another way of remembering this is that whenever a condition involves

an aggregate function, then we use HAVING clause in conjunction with GROUP BY clause.

Situations may also arise when we want to put the conditions on individual records as well

as on groups. In such situations we use both WHERE (for individual records) and HAVING

(for groups) clauses. This can be explained with the help of the following examples:

The management of the shoe factory may want to know what is the total

quantity of shoes, of sizes other than 6, of various types. i.e., what is the total

quantity of shoes (of sizes other than 6) of type School, Office, and Sports each.

•

284

MORE ON DATABASES AND SQL

Moreover, the report is required only for those groups for which the total

quantity is more than 1500.

The management may also want to know what is the maximum, minimum, and

average margin of each type of shoes. But in this reports shoes of sizes 6 and 7

only should be included. Report is required only for those groups for which the

minimum margin is more than 2.

The statements and their outputs corresponding to above requirements are given below:

SELECT type, SUM(qty) FROM shoes

WHERE size <> 6 Checks individual row

GROUP BY type HAVING sum (qty) > 1500; Checks individual group

+--------+----------+
| type | SUM(qty) |
+--------+----------+
| School | 3780 |
+--------+----------+

SELECT type, MIN(margin), MAX(margin), AVG(margin) FROM shoes

WHERE size in (6,7)

GROUP BY type having MIN(margin) > 2;

+--------+-------------+-------------+-------------+
| type | MIN(margin) | MAX(margin) | AVG(margin) |
+--------+-------------+-------------+-------------+
| Office | 3.00 | 3.00 | 3.000000 |
| Sports | 3.50 | 3.50 | 3.500000 |
+--------+-------------+-------------+-------------+

In each situation that we have faced so far, the data was extracted from a single table.

There was no need to refer to more than one tables in the same statement. But many

times, in real applications of databases, it is required to produce reports which need data

from more than one tables. To understand this consider the following situations:

•

Displaying Data from Multiple Tables

285

MORE ON DATABASES AND SQL

The management of the shoe factory wants a report of orders which lists three

columns: Order_No, corresponding customer name, and phone number.

- (MT-1)

In this case order number will be taken from Orders table and corresponding

customer name from Customers table.

The management wants a four-column report containing order_no, order_qty,

name of the corresponding shoe and its cost. - (MT-2)

In this case order number and order quantity will be taken from Orders table

and corresponding shoe name and cost from Shoes table.

The management wants the names of customers who have placed any order of

quantity more than 300. - (MT-3)

In this case Order quantity will be checked in Orders table and for each record

with quantity more than 300, corresponding Customer name will be taken

from Customers table.

The management wants a report in which with each Order_No management

needs name of the corresponding customer and also the total cost (Order

quantity x Cost of the shoe) of the order are shown. - (MT-4)

In this case order number will be taken from Orders table and corresponding

customer name from Customers table. For the cost of each order the quantity

will be taken from Orders table and the Cost from Shoes table.

In all these cases, the data is to be retrieved from multiple tables. SQL allows us to write

statements which retrieve data from multiple tables.

To understand how this is done, consider the following tables of a database.

+------+-------------+
| Code | Name |
+------+-------------+
P001	Toothpaste
P002	Shampoo
P003	Conditioner
+------+-------------+

•

•

•

•

Product

286

MORE ON DATABASES AND SQL

Supplier

Order_table

+----------+--------------+-------------+
| Sup_Code | Name | Address |
+----------+--------------+-------------+
| S001 | DC & Company | Uttam Nagar |
| S002 | SURY Traders | Model Town |
+----------+--------------+-------------+

+----------+--------+----------+
| Order_No | P_Code | Sup_Code |
+----------+--------+----------+
| 1 | P001 | S002 |
| 2 | P002 | S002 |
+----------+--------+----------+

These tables are taken just to explain the current concept.

Cartesian product (also called Cross Join) of two tables is a table obtained by pairing up

each row of one table with each row of the other table. This way if two tables contain 3

rows and 2 rows respectively, then their Cartesian product will contain 6 (=3x2) rows. This

can be illustrated as follows:

Cartesian product of two tables

Cartesian Product or Cross Join of tables :

(1,a)

(2,a)

(3,a)

(1,b)

(2,b)

(3,b)

1

2

3

a

b

287

MORE ON DATABASES AND SQL

Notice that the arrows indicate the 'ordered pairing'.

The number of columns in the Cartesian product is the sum of the number of columns in

both the tables. In SQL, Cartesian product of two rows is obtained by giving the names of

both tables in FROM clause. An example of Cartesian product is shown below:

SELECT * FROM order_table, product;

To give the output of this query, MySQL will pair the rows of the mentioned tables as

follows:

+----------+--------+----------+ +------+-------------+

| Order_No | P_Code | Sup_Code | | Code | Name |

+----------+--------+----------+ +------+-------------+

| 1 | P001 | S002 | | P001 | Toothpaste |

| | | |

| 2 | P002 | S002 | | P002 | Shampoo |

+----------+--------+----------+ | P003 | Conditioner |

+------+-------------+

And the following output will be produced:

+----------+--------+----------+------+-------------+
| Order_No | P_Code | Sup_Code | Code | Name |
+----------+--------+----------+------+-------------+
1	P001	S002	P001	Toothpaste
2	P002	S002	P001	Toothpaste
1	P001	S002	P002	Shampoo
2	P002	S002	P002	Shampoo
1	P001	S002	P003	Conditioner
2	P002	S002	P003	Conditioner
+----------+--------+----------+------+-------------+

Here we observe that the Cartesian product contains all the columns from both tables.

Each row of the first table (Order_table) is paired with each row of the second table

(Product).

Order_table Product

-(CP-1)

288

MORE ON DATABASES AND SQL

If we change the sequence of table names in the FROM clause, the result will remain the

same but the sequence of rows and columns will change. This can be observed in the

following statement and the corresponding output.

SELECT * FROM product, order_table;

+------+-------------+----------+--------+----------+
| Code | Name | Order_No | P_Code | Sup_Code |
+------+-------------+----------+--------+----------+
P001	Toothpaste	1	P001	S002
P001	Toothpaste	2	P002	S002
P002	Shampoo	1	P001	S002
P002	Shampoo	2	P002	S002
P003	Conditioner	1	P001	S002
P003	Conditioner	2	P002	S002
+------+-------------+----------+--------+----------+

We can have Cartesian product of more than two tables also. Following is the Cartesian

Product of three tables:

SELECT * FROM order_table, supplier, product;

+----------+--------+----------+----------+--------------+-------------+------+-------------+
| Order_No | P_Code | Sup_Code | Sup_Code | Name | Address | Code |Name |
+----------+--------+----------+----------+--------------+-------------+------+-------------+
1	P001	S002	S001	DC & Company	Uttam Nagar	P001	Toothpaste
2	P002	S002	S001	DC & Company	Uttam Nagar	P001	Toothpaste
1	P001	S002	S002	SURY Traders	Model Town	P001	Toothpaste
2	P002	S002	S002	SURY Traders	Model Town	P001	Toothpaste
1	P001	S002	S001	DC & Company	Uttam Nagar	P002	Shampoo
2	P002	S002	S001	DC & Company	Uttam Nagar	P002	Shampoo
1	P001	S002	S002	SURY Traders	Model Town	P002	Shampoo
2	P002	S002	S002	SURY Traders	Model Town	P002	Shampoo
1	P001	S002	S001	DC & Company	Uttam Nagar	P003	Conditioner
2	P002	S002	S001	DC & Company	Uttam Nagar	P003	Conditioner
1	P001	S002	S002	SURY Traders	Model Town	P003	Conditioner
2	P002	S002	S002	SURY Traders	Model Town	P003	Conditioner
+----------+--------+----------+----------+--------------+-------------+------+-------------+

The complete Cartesian product of two or more tables is, generally, not used directly.

But, some times it is required. Suppose the company with the above database wants to

send information of each of its products to each of its suppliers. For follow-up, the

management wants a complete list in which each Supplier's detail is paired with each

Product's detail. For this, the computer department can produce a list which is the

Cartesian product of Product and Supplier tables, as follows:

SELECT *, ' ' AS Remarks FROM Product, Supplier;

-(CP-2)

-(CP-3)

289

MORE ON DATABASES AND SQL

to get the following report:

+------+-------------+----------+--------------+-------------+----------+
| Code | Name | Sup_Code | Name | Address | Remarks |
+------+-------------+----------+--------------+-------------+----------+
P001	Toothpaste	S001	DC & Company	Uttam Nagar	
P001	Toothpaste	S002	SURY Traders	Model Town	
P002	Shampoo	S001	DC & Company	Uttam Nagar	
P002	Shampoo	S002	SURY Traders	Model Town	
P003	Conditioner	S001	DC & Company	Uttam Nagar	
P003	Conditioner	S002	SURY Traders	Model Town	
+------+-------------+----------+--------------+-------------+----------+

The complete Cartesian product of two or more tables is, generally, not used directly.

Sometimes the complete Cartesian product of two tables may give some confusing

information also. For example, the first Cartesian product (CP-1) indicates that each

order (Order Numbers 1 and 2) is placed for each Product (Code 'P001', 'P002', 'P003'). But

this is incorrect!

Similar is the case with CP-2 and CP-3 also.

But we can extract meaningful information from the Cartesian product by placing some

conditions in the statement. For example, to find out the product details corresponding

to each Order details, we can enter the following statement:

SELECT * FROM order_table, product WHERE p_code = code;

+----------+--------+----------+------+------------+
| Order_No | P_Code | Sup_Code | Code | Name |
+----------+--------+----------+------+------------+
| 1 | P001 | S002 | P001 | Toothpaste |
| 2 | P002 | S002 | P002 | Shampoo |
+----------+--------+----------+------+------------+

Two table names are specified in the FROM clause of this statement, therefore MySQL

creates a Cartesian product of the tables. From this Cartesian product MySQL selects only

those records for which P_Code (Product code specified in the Order_table table)

matches Code (Product code in the Product table). These selected records are then

displayed.

Equi- Join of tables :

290

MORE ON DATABASES AND SQL

It always happens that whenever we have to get the data from more than one tables,

there is some common column based on which the meaningful data is extracted from the

tables. We specify table names in the FROM clause of SELECT command. We also give the

condition specifying the matching of common column. (When we say common column, it

does not mean that the column names have to be the same. It means that the columns

should represent the same data with the same data types.) Corresponding to this

statement, internally the Cartesian product of the tables is made. Then based on the

specified condition the meaningful data is extracted from this Cartesian product and

displayed.

Let us take another example of producing a report which displays the supplier name and

address corresponding to each order.

SELECT Order_No, Order_table.Sup_Code, Name, Address

FROM order_table, supplier

WHERE order_table.sup_code = supplier.sup_code;

+----------+----------+--------------+------------+
| Order_No | Sup_Code | Name | Address |
+----------+----------+--------------+------------+
| 1 | S002 | SURY Traders | Model Town |
| 2 | S002 | SURY Traders | Model Town |
+----------+----------+--------------+------------+

In this statement the tables referred are Order_table and Supplier. In these tables

sup_code is the common column. This column exists with same name in both the tables.

Therefore whenever we mention it, we have to specify the table from which we want to

extract this column. This is known as qualifying the column name. If we don't qualify the

common column name, the statement would result into an error due to the ambiguous

the column names.

Following is another example of equi-join. This time with three tables.

Select Order_no, Product.name as Product, Supplier.Name as Supplier

 From order_table, Product, Supplier

 WHERE order_table.Sup_Code = Supplier.Sup_Code

 and P_Code = Code;

291

MORE ON DATABASES AND SQL

The output produced by this statement is:

+----------+------------+--------------+
| Order_no | Product | Supplier |
+----------+------------+--------------+
| 1 | Toothpaste | SURY Traders |
| 2 | Shampoo | SURY Traders |
+----------+------------+--------------+

Let us now get back to our original Shoe database and see how Ms. Akhtar uses the

concept of joins to extract data from multiple tables.

For the situation MT-1, she writes the query:

SELECT order_no , name, phone

FROM orders, customers

WHERE orders.cust_code = customers.cust_code;

and get the following required output:

+----------+----------------+--------------------+
| order_no | name | phone |
+----------+----------------+--------------------+
1	Novelty Shoes	4543556, 97878989
2	Novelty Shoes	4543556, 97878989
5	Novelty Shoes	4543556, 97878989
9	Novelty Shoes	4543556, 97878989
4	Aaram Footwear	NULL
6	Aaram Footwear	NULL
10	Aaram Footwear	NULL
3	Foot Comfort	51917142, 76877888
7	Pooja Shoes	61345432, 98178989
8	Dev Shoes	NULL
+----------+----------------+--------------------+

Following are the queries and corresponding outputs for the situations MT-2, MT-3, and

MT-4 respectively:

SELECT order_no , Order_Qty, name, cost

 FROM orders, shoes WHERE Shoe_Code = code;

292

MORE ON DATABASES AND SQL

+----------+-----------+----------------+--------+
| order_no | Order_Qty | name | cost |
+----------+-----------+----------------+--------+
1	200	School Canvas	132.50
2	200	School Canvas	135.50
3	150	School Leather	232.50
4	250	School Leather	270.00
5	400	School Leather	232.50
6	300	Galaxy	640.00
7	200	Tracker	700.00
8	350	Galaxy	712.00
9	225	Galaxy	720.00
10	200	Tracker	800.50
+----------+-----------+----------------+--------+

SELECT name, address FROM orders, customers

WHERE orders.cust_code = customers.cust_code

and order_qty > 300;

+---------------+------------------------+
| name | address |
+---------------+------------------------+
| Novelty Shoes | Raja Nagar, Bhopal |
| Dev Shoes | Mohan Nagar, Ghaziabad |
+---------------+------------------------+

 SELECT order_no, Order_Qty, customers.name,

 cost*order_qty as 'Order Cost'

 FROM orders, shoes, Customers

 WHERE Shoe_Code = code

 and Orders.Cust_Code = Customers.Cust_Code

 order by order_no;

293

MORE ON DATABASES AND SQL

+----------+-----------+----------------+------------+
| order_no | Order_Qty | name | Order Cost |
+----------+-----------+----------------+------------+
1	200	Novelty Shoes	26500.00
2	200	Novelty Shoes	27100.00
3	150	Foot Comfort	34875.00
4	250	Aaram Footwear	67500.00
5	400	Novelty Shoes	93000.00
6	300	Aaram Footwear	192000.00
7	200	Pooja Shoes	140000.00
8	350	Dev Shoes	249200.00
9	225	Novelty Shoes	162000.00
10	200	Aaram Footwear	160100.00
+----------+-----------+----------------+------------+

Here is another statement extracting data from multiple tables. Try to find out what will

be its output and then try this statement on computer and check whether you thought of

the correct output.

SELECT order_no , Order_Qty, name, cost

FROM orders, shoes

WHERE Shoe_Code = code and order_qty > 200;

As we have just seen, in a join the data is retrieved from the Cartesian product of two

tables by giving a condition of equality of two corresponding columns - one from each

table. Generally, this column is the Primary Key of one table. In the other table this

column is the Foreign key. Such a join which is obtained by putting a condition of equality

on cross join is called an 'equi-join'. As an example, once again consider the Product,

Supplier, and Order tables referenced earlier. For quick reference these tables are shown

once again:

+------+-------------+
| Code | Name |
+------+-------------+
P001	Toothpaste
P002	Shampoo
P003	Conditioner
+------+-------------+

Foreign Key :

Product

294

MORE ON DATABASES AND SQL

Supplier

Order_table

+----------+--------------+-------------+
| Sup_Code | Name | Address |
+----------+--------------+-------------+
| S001 | DC & Company | Uttam Nagar |
| S002 | SURY Traders | Model Town |
+----------+--------------+-------------+

+----------+--------+----------+
| Order_No | P_Code | Sup_Code |
+----------+--------+----------+
| 1 | P001 | S002 |
| 2 | P002 | S002 |
+----------+--------+----------+

In these tables there is a common column between Product and Order_table tables (Code

and P_Code respectively) which is used to get the Equi-Join of these two tables. Code is

the Primary Key of Product table and in Order_table table it is not so (we can place more

than one orders for the same product). In the order_table, P_Code is a Foreign Key.

Similarly, Sup_Code is the primary key in Supplier table whereas it is a Foreign Key is

Order_table table. A foreign key in a table is used to ensure referential integrity and to

get Equi-Join of two tables.

Referential Integrity: Suppose while entering data in Order_table we enter a P_Code

that does not exist in the Product table. It means we have placed an order for an item that

does not exist! We should and can always avoid such human errors. Such errors are

avoided by explicitly making P_Code a foreign key of Order_table table which always

references the Product table to make sure that a non-existing product code is not entered

in the Order_table table. Similarly, we can also make Sup_Code a Foreign key in

Order_table table which always references Customer table to check validity of

Cust_code. This can be done, but how to do it is beyond the scope of this book.

This property of a relational database which ensures that no entry in a foreign key column

of a table can be made unless it matches a primary key value in the corresponding related

table is called Referential Integrity.

295

MORE ON DATABASES AND SQL

Union

Union is an operation of combining the output of two SELECT statements. Union of two

SELECT statements can be performed only if their outputs contain same number of

columns and data types of corresponding columns are also the same. The syntax of UNION

in its simplest form is:

SELECT <select_list>

FROM <tablename>

[WHERE <condition>]

 UNION [ALL]

SELECT <select_list>

FROM <tablename>

[WHERE <condition>];

Union does not display any duplicate rows unless ALL is specified with it.

Example:

Suppose a company deals in two different categories of items. Each category contains a

number of items and for each category there are different customers. In the database

there are two customer tables: Customer_Cat_1 and Customer_Cat_2. If it is required to

produce a combined list of all the customers, then it can be done as follows:

SELECT Cust_Code from Customer_Cat_1

UNION

SELECT Cust_Code from Customer_Cat_2;

If a customer exists with same customer code in both the tables, its code will be displayed

only once - because Union does display duplicate rows. If we explicitly want the duplicate

rows, then we can enter the statement:

SELECT Cust_Code from Customer_Cat_1

UNION ALL

SELECT Cust_Code from Customer_Cat_2;

296

MORE ON DATABASES AND SQL

Constraints

Many times it is not possible to keep a manual check on the data that is going into the

tables using INSERT or UPDATE commands. The data entered may be invalid. MySQL

provides some rules, called Constraints, which help us, to some extent, ensure validity of

the data. These constraints are:

1. PRIMARY KEY Sets a column or a group of columns as the Primary Key of

a table. Therefore, NULLs and Duplicate values in this

column are not accepted.

2. NOT NULL Makes sure that NULLs are not accepted in the specified

column.

3. FOREIGN KEY Data will be accepted in this column, if same data value

exists in a column in another related table. This other

related table name and column name are specified while

creating the foreign key constraint.

4. UNIQUE Makes sure that duplicate values in the specified column

are not accepted.

5. ENUM Defines a set of values as the column domain. So any

value in this column will be from the specified values

only.

6. SET Defines a set of values as the column domain. Any value

in this column will be a seubset of the specied set only.

We shall discuss only the PRIMARY KEY and NOT NULL constraints in this book. Other

constraints are beyond the scope of this book.

Recall that primary key of a table is a column or a group of columns that uniquely

identifies a row of the table. Therefore no two rows of a table can have the same primary

key value. Now suppose that the table Shoes is created with the following statement:

S.No. Constraint Purpose

PRIMARY KEY:

297

MORE ON DATABASES AND SQL

CREATE TABLE Shoes

(Code CHAR(4), Name VARCHAR(20), type VARCHAR(10),

size INT(2), cost DECIMAL(6,2), margin DECIMAL(4,2),

Qty INT(4));

We know that in this table Code is the Primary key. But, MySQL does not know that!

Therefore it is possible to enter duplicate values in this column or to enter NULLs in this

column. Both these situations are unacceptable.

To make sure that such data is not accepted by MySQL, we can set Code as the primary key

of Shoes table. It can be done by using the PRIMARY KEY clause at the time of table

creation as follows:

CREATE TABLE Shoes

(Code CHAR(4) PRIMARY KEY, Name VARCHAR(20),

type VARCHAR(10), size INT(2), cost DECIMAL(6,2),

margin DECIMAL(4,2), Qty INT(4));

or as follows:

CREATE TABLE Shoes

(Code CHAR(4), Name VARCHAR(20), type VARCHAR(10),

size INT(2), cost DECIMAL(6,2), margin DECIMAL(4,2),

Qty INT(4), PRIMARY KEY (Code));

To create a table Bills with the combination of columns Order_No and Cust_Code as the

primary key, we enter the statement:

CREATE TABLE bills

(Order_Num INT(4) PRIMARY KEY,

cust_code VARCHAR(4) PRIMARY KEY,

bill_Date DATE, Bill_Amt DECIMAL(8,2));

298

MORE ON DATABASES AND SQL

Contrary to our expectation, we get an error (Multiple primary key defined) with this

statement. The reason is that MySQL interprets this statement as if we are trying to

create two primary keys of the table - Order_Num, and Cust_code. But a table can have at

most one primary key. To set this combination of columns a primary key we have to enter

the statement as follows:

CREATE TABLE bills

(Order_Num INT(4), cust_code VARCHAR(4),

bill_Date date, Bill_Amt DECIMAL(8,2),

PRIMARY KEY(Order_Num, cust_code));

Let us now check the table structure with the command: DESC bills;

The table structure is as shown below:

+-----------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-----------+--------------+------+-----+---------+-------+

| Order_Num | INT(4) | NO | PRI | 0 | |

| cust_code | VARCHAR(4) | NO | PRI | | |

| bill_Date | date | YES | | NULL | |

| Bill_Amt | DECIMAL(8,2) | YES | | NULL | |

+-----------+--------------+------+-----+---------+-------+

Many times there are some columns of a table in which NULL values should not be

accepted. We always want some known valid data values in these columns. For example,

we cannot have an order for which the customer code is not known. It means whenever

we enter a row in the orders table, corresponding customer code cannot be NULL.

Similarly while entering records in the Shoes table, we have to mention the Shoe size, it

cannot be set NULL. There may be any number of such situations.

While creating a table we can specify in which columns NULLs should not be accepted as

follows:

NOT NULL:

These columns

constitute the

primary key of

the table

NULLs cannot be accepted in these columns.

299

MORE ON DATABASES AND SQL

CREATE TABLE Shoes

(Code CHAR(4) PRIMARY KEY, Name VARCHAR(20),

type VARCHAR(10), size INT(2) NOT NULL,

cost DECIMAL(6,2), margin DECIMAL(4,2), Qty INT(4));

CREATE TABLE bills

(Order_Num INT(4), cust_code VARCHAR(4),

bill_Date DATE, Bill_Amt DECIMAL(8,2) NOT NULL,

PRIMARY KEY (Order_Num, cust_code));

Now if we try to enter a NULL in the specified column, MySQL will reject the entry and

give an error.

After creating a table, we can view its structure using DESC command. The table

structure also includes the constraints, if any. Therefore, when we use DESC command,

we are shown the table structure as well as constraints, if any. A constraint is shown

beside the column name on which it is applicable. E.g., the statement:

DESC Shoes;

displays the table structure as follows:

+--------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+--------------+------+-----+---------+-------+

| Code | CHAR(4) | NO | PRI | NULL | |

| Name | VARCHAR(20) | YES | | | |

| type | VARCHAR(10) | YES | | NULL | |

| size | INT(2) | NO | | 0 | |

| cost | DECIMAL(6,2) | YES | | NULL | |

| margin | DECIMAL(4,2) | YES | | NULL | |

| Qty | INT(4) | YES | | NULL | |

+--------+--------------+------+-----+---------+-------+

Viewing Constraints, Viewing the Columns Associated with Constraints :

300

MORE ON DATABASES AND SQL

ALTER TABLE

•

•

•

•

In class XI, we have studied that a new column can be added to a table using ALTER TABLE

command. Now we shall study how ALTER TABLE can be used:

to add a constraint

to remove a constraint

to remove a column from a table

to modify a table column

If we create a table without specifying any primary key, we can still specify its primary

key by ALTER TABLE command. Suppose we have created the Shoes table without

specifying any Primary key, then later we can enter the statement as follows:

ALTER TABLE Shoe ADD PRIMARY KEY(code);

This will set Code as the primary key of the table. But if the Code column already contains

some duplicate values, then this statement will give an error.

In MySQL, it is also possible to change the primary key column(s) of a table. Suppose, in

the Shoes table, istread of Code, we want to set the combination of 'Name' and 'Size' as

the primary key. For this first we have to DROP the already existing primary key (i.e.,

Code) and then add the new primary key (i.e., Name and Size). The corresponding

statements are as follows:

ALTER TABLE Shoes DROP PRIMARY KEY;

After this statement, there is no primary key of Shoe table. Now we can add the new

primary key as follows:

ALTER TABLE Shoe ADD PRIMARY KEY (Name, Size);

Add, Modify, and Remove constraints :

301

MORE ON DATABASES AND SQL

Now if we see the table structure by DESC Shoes; statement, it will be shown as follows:

+--------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+-------+
Code	CHAR(4)	NO		NULL	
Name	VARCHAR(20)	NO	PRI		
type	VARCHAR(10)	YES		NULL	
size	INT(2)	NO	PRI	0	
cost	DECIMAL(6,2)	YES		NULL	
margin	DECIMAL(4,2)	YES		NULL	
Qty	INT(4)	YES		NULL	
+--------+--------------+------+-----+---------+-------+

In MySQL, it is not possible to add or drop NOT NULL constraint explicitly after the table

creation. But it can be done using MODIFY clause of ALTER TABLE command. As an

example, suppose we don't want to accept NULL values in bill_date column of bills table,

we can issue the statement:

ALTER TABLE bills MODIFY bill_date DATE NOT NULL;

Later on if we wish to change this status again, we can do so by entering the command:

ALTER TABLE bills MODIFY bill_date DATE NULL;

ALTER TABLE can be used to remove a column from a table. This is done using DROP clause

in ALTER TABLE command. The syntax is as follws:

ALTER TABLE <tablename> DROP <columnname>

[, DROP <columnname> [, DROP <columnname> [, . . .]]];

Following are some self explanatory examples of SQL statemenets to remove columns

from tables:

ALTER TABLE Shoes DROP Qty;

ALTER TABLE Orders DROP Cust_Code;

ALTER TABLE Student DROP Class, DROP RNo, DROP Section;

Remove and Modify columns :

302

MORE ON DATABASES AND SQL

Although any column of a table can be removed, MySQL puts the restriction that a primary

key column can be removed only if the remaining, primary key columns, if any, do not

contain any duplicate entry. This can be understood more clearly with the help of

following example:

The Name and Size columns of the Shoe table constitute its primary key. Now if we drop

the Name column from the table, Size will be the remaining Primary Key column of the

table. Therefore, duplicate entries in the Size column should not be allowed. To ensure

this, before removing Name column from the table, MySQL checks that there are no

duplicate entries present in the Size column of the table. If there are any, then the

statement trying to remove Name column from the table will result in an error and the

Name column will not be removed. If there are no duplicate enteries in the Size column,

then Name column will be removed. Similar will be the case with the Name column, if we

try to remove Size column. But there won't be any problem if we try to remove both the

primary key columns simultaneously with one ALTER TABLE statement as follows:

ALTER TABLE Shoes DROP name, DROP size;

ALTER TABLE can also be used to change the data type of a table column. For this the

syntax is as follows:

ALTER TABLE <tablename> MODIFY <col_name> <new datatype>

[,MODIFY <col_name> <new datatype>

[,MODIFY <col_name> <new data type> [, . . .]]];

e.g., the statement:

ALTER TABLE shoes modify code CHAR(5), modify type VARCHAR(20);

changes the data type of column Code to CHAR(5) and that of type to VARCHAR(20).

When we give a statement to chage the data type of a column, MySQL executes that

statement correctly only if the change in data type does not lead to any data loss. E.g., if

we try to change the data type of order_date column of orders table from date to int,

we'll get an error. This is because the data already stored in this column cannot be

converted into int type. Similarly, if a column of VARCHAR(10) type conatins some data

value which is 10 characters long, then the data type of this column cannot be converted

to VARCHAR(n), where n is an integer less than 10.

303

MORE ON DATABASES AND SQL

DROP TABLE

Summary

•

•

•

•

•

•

Sometimes there is a requirement to remove a table from the database. In such cases we

don't want merely to delete the data from the table, but we want to delete the table

itself. DROP TABLE command is used for this purpose. The syntax of DROP TABLE command

is as follows:

DROP TABLE <tablename>;

e.g. to remove the table Orders from the database we enter the statement:

DROP TABLE Orders;

And after this statement orders table is no longer available in the database. It has been

removed.

Aggregate or Group functions: MySQL provides Aggregate or Group functions

which work on a number of values of a column/expression and return a single

value as the result. Some of the most frequently used. Aggregate functions in

MySQL are : MIN(), MAX(), AVG(), SUM(), COUNT().

Data Types in aggregate functions: MIN(), MAX(), and COUNT() work on any

type of values - Numeric, Date, or String. AVG(), and SUM() work on only

Numeric values (INT and DECIMAL).

NULLs in aggregate functions: Aggregate functions totally ignore NULL values

present in a column.

GROUP BY: GROUP BY clause is used in a SELECT statement in conjunction with

aggregate functions to group the result based on distinct values in a column.

HAVING: HAVING clause is used in conjuction with GROUP BY clause in a SELECT

statement to put condition on groups.

WHERE Vs HAVING: WHERE is used to put a condition on individual row of a

table whereas HAVING is used to put condition on individual group formed by

GROUP BY clause in a SELECT statement.

304

MORE ON DATABASES AND SQL

Cartesian Product (or Cross Join): Cartesian product of two tables is a table

obtained by pairing each row of one table with each row of the other. A

cartesian product of two tables contains all the columns of both the tables.

Equi-Join: An equi join of two tables is obtained by putting an equality

condition on the Cartesian product of two tables. This equality condition is put

on the common column of the tables. This common column is, generally,

primary key of one table and foreign key of the other.

Foreign Key: It is a column of a table which is the primary key of another table

in the same database. It is used to enforce referential integrity of the data.

Referential Integrity: The property of a relational database which ensures

that no entry in a foreign key column of a table can be made unless it matches a

primary key value in the corresponding column of the related table.

Union: Union is an operation of combining the output of two SELECT

statements.

Constraints: These are the rules which are applied on the columns of tables to

ensure data integrity and consistency.

ALTER TABLE: ALTER TABLE command can be used to Add, Remove, and Modify

columns of a table. It can also be used to Add and Remove constraints.

DROP TABLE: DROP TABLE command is used to delete tables.

1. Which of the following will give the same answer irrespective of the NULL values in

the specified column:

a. MIN() b. MAX()

c. SUM() d. None of the above

2. An aggregate function:

a. Takes a column name as its arguments

b. May take an expression as its argument

•

•

•

•

•

•

•

•

EXERCISES

MULTIPLE CHOICE QUESTIONS

305

MORE ON DATABASES AND SQL

c. Both (a) and (b)

d. None of (a) and (b)

3. HAVING is used in conjunction with

a. WHERE b. GROUP BY clause

c. Aggregate functions d. None of the above

4. In the FROM clause of a SELECT statement

a. Multiple Column Names are specified.

b. Multiple table names are specified.

c. Multiple Column Names may be specified.

d. Multiple table names may be specified.

5. JOIN in RDBMS refers to

a. Combination of multiple columns b. Combination of multiple rows

c. Combination of multiple tables d. Combination of multiple databases

6. Equi-join is formed by equating

a. Foreign key with Primary key b. Each row with all other rows

c. Primary key with Primary key d. Two tables

7. Referential integrity

a. Must be maintained

b. Cannot be maintained

c. Is automatically maintained by databases

d. Should not be maintained

8. A Primary key column

a. Can have NULL values b. Can have duplicate values

c. Both (a) and (b) d. Neither (a) nor (b)

306

MORE ON DATABASES AND SQL

9. Primary Key of a table can be

a. Defined at the time of table creation only.

b. Defined after table creation only.

c. Can be changed after table creation

d. Cannot be changed after table creation

10. Two SELECT commands in a UNION

a. Should select same number of columns.

b. Should have different number of columns

c. Both (a) and (b)

d. Neither (a) nor (b)

1. Why are aggregate functions called so? Name some aggregate functions.

2. Why is it not allowed to give String and Date type arguments for SUM() and AVG()

functions? Can we give these type of arguments for other functions?

3. How are NULL values treated by aggregate functions?

4. There is a column C1 in a table T1. The following two statements:

SELECT COUNT(*) FROM T1; and SELECT COUNT(C1) from T1;

are giving different outputs. What may be the possible reason?

5. What is the purpose of GROUP BY clause?

6. What is the difference between HAVING and WHERE clauses? Explain with the help of

an example.

7. What is the Cartesian product of two table? Is it same as an Equi-join?

8. There are two table T1 and T2 in a database. Cardinality and degree of T1 are 3 and 8

respectively. Cardinality and degree of T2 are 4 and 5 respectively. What will be the

degree and Cardinality of their Cartesian product?

ANSWER THE FOLLOWING QUESTIONS

307

MORE ON DATABASES AND SQL

9. What is a Foreign key? What is its importance?

10. What are constraints? Are constraints useful or are they hinderance to effective

management of databases?

11. In a database there is a table Cabinet. The data entry operator is not able to put

NULL in a column of Cabinet? What may be the possible reason(s)?

12. In a database there is a table Cabinet. The data entry operator is not able to put

duplicate values in a column of Cabinet? What may be the possible reason(s)?

13. Do Primary Key column(s) of a table accept NULL values?

14. There is a table T1 with combination of columns C1, C2, and C3 as its primary key? Is

it possible to enter:

a. NULL values in any of these columns?

b. Duplicate values in any of these columns?

15. At the time of creation of table X, the data base administrator specified Y as the

Primary key. Later on he realized that instead of Y, the combination of column P and

Q should have been the primary key of the table. Based on this scenario, answer the

following questions:

a. Is it possible to keep Y as well as the combination of P and Q as the primary key?

b. What statement(s) should be entered to change the primary key as per the

requirement.

16. Does MySQL allow to change the primary key in all cases? If there is some special

case, please mention.

17. What are the differences between DELETE and DROP commands of SQL?

308

MORE ON DATABASES AND SQL

LAB EXERCISES

1. In a database create the following tables with suitable constraints :

+-------+----------------+-------+------+------+------------------------+------------------+
| AdmNo | Name | Class | Sec | RNo | Address | Phone |
+-------+----------------+-------+------+------+------------------------+------------------+
1271	Utkarsh Madaan	12	C	1	C-32, Punjabi Bagh	4356154
1324	Naresh Sharma	10	A	1	31, Mohan Nagar	435654
1325	Md. Yusuf	10	A	2	12/21, Chand Nagar	145654
1328	Sumedha	10	B	23	59, Moti Nagar	4135654
1364	Subya Akhtar	11	B	13	12, Janak Puri	NULL
1434	Varuna	12	B	21	69, Rohini	NULL
1461	David DSouza	11	B	1	D-34, Model Town	243554, 98787665
2324	Satinder Singh	12	C	1	1/2, Gulmohar Park	143654
2328	Peter Jones	10	A	18	21/32B, Vishal Enclave	24356154
2371	Mohini Mehta	11	C	12	37, Raja Garden	435654, 6765787
+-------+----------------+-------+------+------+------------------------+------------------+

+-------+-------------+-------------+-------+
| AdmNo | Game | CoachName | Grade |
+-------+-------------+-------------+-------+
1324	Cricket	Narendra	A
1364	Volleball	M.P. Singh	A
1271	Volleball	M.P. Singh	B
1434	Basket Ball	I. Malhotra	B
1461	Cricket	Narendra	B
2328	Basket Ball	I. Malhotra	A
2371	Basket Ball	I. Malhotra	A
1271	Basket Ball	I. Malhotra	A
1434	Cricket	Narendra	A
2328	Cricket	Narendra	B
1364	Basket Ball	I. Malhotra	B
+-------+-------------+-------------+-------+

a) Based on these tables write SQL statements for the following queries:

i. Display the lowest and the highest classes from the table STUDENTS.

ii. Display the number of students in each class from the table STUDENTS.

iii. Display the number of students in class 10.

iv. Display details of the students of Cricket team.

STUDENTS

SPORTS

309

MORE ON DATABASES AND SQL

v. Display the Admission number, name, class, section, and roll number of the

students whose grade in Sports table is 'A'.

vi. Display the name and phone number of the students of class 12 who are play

some game.

vii. Display the Number of students with each coach.

viii. Display the names and phone numbers of the students whose grade is 'A' and

whose coach is Narendra.

b) Identify the Foreign Keys (if any) of these tables. Justify your choices.

c) Predict the the output of each of the following SQL statements, and then verify the

output by actually entering these statements:

i. SELECT class, sec, count(*) FROM students GROUP BY class, sec;

ii. SELECT Game, COUNT(*) FROM Sports GROUP BY Game;

iii. SELECT game, name, address FROM students, Sports

WHERE students.admno = sports.admno AND grade = 'A';

iv. SELECT Game FROM students, Sports

WHERE students.admno = sports.admno AND Students.AdmNo = 1434;

2. In a database create the following tables with suitable constraints :

+--------+--------------+--------------+------+
| I_Code | Name | Category | Rate |
+--------+--------------+--------------+------+
1001	Masala Dosa	South Indian	60
1002	Vada Sambhar	South Indian	40
1003	Idli Sambhar	South Indian	40
2001	Chow Mein	Chinese	80
2002	Dimsum	Chinese	60
2003	Soup	Chinese	50
3001	Pizza	Italian	240
3002	Pasta	Italian	125
+--------+--------------+--------------+------+

ITEMS

310

MORE ON DATABASES AND SQL

BILLS

+--------+------------+--------+-----+
| BillNo | Date | I_Code | qty |
+--------+------------+--------+-----+
1	2010-04-01	1002	2
1	2010-04-01	3001	1
2	2010-04-01	1001	3
2	2010-04-01	1002	1
2	2010-04-01	2003	2
3	2010-04-02	2002	1
4	2010-04-02	2002	4
4	2010-04-02	2003	2
5	2010-04-03	2003	2
5	2010-04-03	3001	1
5	2010-04-03	3002	3
+--------+------------+--------+-----+

a) Based on these tables write SQL statements for the following queries:

i. Display the average rate of a South Indian item.

ii. Display the number of items in each category.

iii. Display the total quantity sold for each item.

iv. Display total quanity of each item sold but don't display this data for the

items whose total quantity sold is less than 3.

v. Display the details of bill records along with Name of each corresponding

item.

vi. Display the details of the bill records for which the item is 'Dosa'.

vii. Display the bill records for each Italian item sold.

viii. Display the total value of items sold for each bill.

b) Identify the Foreign Keys (if any) of these tables. Justify your answer.

c) Answer with justification (Think independently. More than one answers may be

correct. It all depends on your logical thinking):

i. Is it easy to remember the Category of item with a given item code? Do you

find any kind of pattern in the items code? What could be the item code of

another South Indian item?

311

MORE ON DATABASES AND SQL

ii. What can be the possible uses of Bills table? Can it be used for some

analysis purpose?

iii. Do you find any columns in these tables which can be NULL? Is there any

column which must not be NULL?

3. In a database create the following tables with suitable constraints :

+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
RegNo	char(10)	NO	PRI		
RegDate	date	YES		NULL	
Owner	varchar(30)	YES		NULL	
Address	varchar(50)	YES		NULL	
+---------+-------------+------+-----+---------+-------+

+------------+----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+-------+
Challan_No	int(11)	NO	PRI	0	
Ch_Date	date	YES		NULL	
RegNo	char(10)	YES		NULL	
Offence	int(3)	YES		NULL	
+------------+----------+------+-----+---------+-------+

+--------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+-------------+------+-----+---------+-------+
Offence_Code	int(3)	NO	PRI	0	
Off_desc	varchar(30)	YES		NULL	
Challan_Amt	int(4)	YES		NULL	
+--------------+-------------+------+-----+---------+-------+

a) Based on these tables write SQL statements for the following queries:

i. Display the dates of first registration and last registration from the table

Vehicle.

VEHICLE

CHALLAN

OFFENCE

312

MORE ON DATABASES AND SQL

ii. Display the number of challans issued on each date.

iii. Display the total number of challans issued for each offence.

iv. Display the total number of vehicles for which the 3rd and 4th characters

of RegNo are '6C'.

v. Display the total value of challans issued for which the Off_Desc is 'Driving

without License'.

vi. Display details of the challans issued on '2010-04-03' along with Off_Desc

for each challan.

vii. Display the RegNo of all vehicles which have been challaned more than

once.

viii. Display details of each challan alongwith vehicle details, Off_desc, and

Challan_Amt.

b) Identify the Foreign Keys (if any) of these tables. Justify your choices.

c) Should any of these tables have some more column(s)? Think, discuss in peer

groups, and discuss with your teacher.

4. In a database create the following tables with suitable constraints:

1 Mukul 30000 West 28 A 10

2 Kritika 35000 Centre 30 A 10

3 Naveen 32000 West 40 20

4 Uday 38000 North 38 C 30

5 Nupur 32000 East 26 20

6 Moksh 37000 South 28 B 10

7 Shelly 36000 North 26 A 30

Table: Employee

No Name Salary Zone Age Grade Dept

313

MORE ON DATABASES AND SQL

Table: Department

•

•

•

Dept DName MinSal MaxSal HOD

TEAM BASED TIME BOUND EXERCISE:

10 Sales 25000 32000 1

20 Finance 30000 50000 5

30 Admin 25000 40000 7

a) Based on these tables write SQL statements for the following queries:

i. Display the details of all the employees who work in Sales department.

ii. Display the Salary, Zone, and Grade of all the employees whose HOD is

Nupur.

iii. Display the Name and Department Name of all the employees.

iv. Display the names of all the employees whose salary is not within the

specified range for the corresponding department.

v. Display the name of the department and the name of the corresponding

HOD for all the departments.

b) Identify the Foreign Keys (if any) of these tables. Justify your choices.

(Team size recommended: 3 students each team)

1. A chemist shop sells medicines manufactured by various pharmaceutical companies.

When some medicine is sold, the corresponding stock decreases and when some

medicines are bought (by the chemist shop) from their suppliers, the corresponding

stock increases. Now the shop wants to keep computerized track of its inventory.

The shop owner should be able to find

The current stock of any medicine.

The total sale amount of any specific time period (a specific day, or month, or

any period between two specific dates)

The details of all the medicines from a specific supplier.

314

MORE ON DATABASES AND SQL

The details of all the medicines from a specific manufacturer.

Total value of the medicines in the stock.

There may be a number of other reports which the shop owner may like to have.

The job of each team is to design a database for this purpose. Each team has to

specify:

The structure (with constraints) of each of the tables designed (with

justification).

How the tables are related to each other (foreign keys).

How the design will fulfill all the mentioned requirements.

At least 10 reports that can be generated with the database designed.

2. To expand its business, XYZ Mall plans to go online. Anyone who shops at the Mall will

be given a membership number and Password which can be used for online shopping.

With this membership number and password, customers can place their orders

online. The mall will maintain the customers' data and orders' data. A person is put

on duty to keep constantly checking the Orders data. Whenever an order is received,

its processing has to start at the earliest possible.

The Orders' data will be analysed periodically (monthly, quarterly, annually -

whatever is suitable) to further improve business and customer satisfaction.

The job of each team is to design a database for this purpose. Each team has to

specify:

The structure (with constraints) of each of the tables designed (with

justification).

How the tables are related to each other (foreign keys).

How the design will fulfill all the mentioned requirements.

At least 10 reports that can be generated with the database designed.

•

•

•

•

•

•

•

•

•

•

